Antioxidant and Anti-inflammatory Activities of Ethanol Extract from Leaves of Cirsium japonicum

  • Lee, Je-Hyuk (Plant Resources Research Institute, Duksung Womens University) ;
  • Choi, Soo-Im (Plant Resources Research Institute, Duksung Womens University) ;
  • Lee, Yong-Soo (Plant Resources Research Institute, Duksung Womens University) ;
  • Kim, Gun-Hee (Plant Resources Research Institute, Duksung Womens University)
  • 발행 : 2008.02.29

초록

Antioxidant and anti-rheumatoid activities of Cirsium japonicum leaf extract (CJLE) were investigated in this study. CJLE had similar DPPH radical scavenging activity and reducing power to ascorbic acid and several flavonoids. Rheumatoid arthritis (RA) is a chronic inflammatory tissue-destructive disease, partly related with functions of hyaluronidases (HAases) and collgenases. CJLE ($1,000\;{\mu}g/mL$) had approximately 60.7 and 31.9% inhibition of HAase and collagenase activity, respectively. Also, CJLE inhibited lipopolysaccharide (LPS)-induced nitrite production in a dose-dependent manner, and CJLE ($1,000\;{\mu}g/mL$) suppressed approximately 70% of LPS-induced nitrite production effectively in RAW 264.7 macrophage cells. CJLE had inhibitory effects on the adherence of monocytic THP-1 to human umbilical vein endothelial cell (HUVEC) monolayers to the basal level. Inhibitory effect of CJLE on the adhesion was caused by suppression of tumor necrosis factor-a-upregulated expression of vascular cellular adhesion molecule-1 (VCAM-1) and E-selectin. We expect that CJLE may alleviate the inflammatory process in rheumatoid synovium, and these findings will raise the possibility of the usage of C. japonicum as a traditional pharmaceutical of anti-rheumatoid arthritis.

키워드

참고문헌

  1. Lui S, Luo X, Li D, Zhang J, Qui D, Lui W, She L, Yang Z. Tumor inhibition and improve immunity in mice treated with flavone from Cirsium japonicum DC. Int. Immunopharmacol. 6: 1387-1393 (2006) https://doi.org/10.1016/j.intimp.2006.02.002
  2. Grzycka K, Krzaczek T, Milkowska J. Research on the biological activity if selected species of flower plant. Ann. Univ. Mariae Curie Sklodowska 33: 275-283 (1978)
  3. Nazaruk J, Jakoniuk P. Flavonoid composition and antimicrobial activity of Cirsium rivulare (Jacq.) All. flowers. J. Ethnopharmacol. 102: 208-212 (2005) https://doi.org/10.1016/j.jep.2005.06.012
  4. Lee HK, Kim JS, Kim NY, Kim MJ, Park SU, Yu CY. Antioxidant, antimutagenicity, and anticancer activities of extracts from Cirsium japonicum var. ussurense KITAMURA. Korean J. Med. Crop Sci. 11: 53-61 (2003)
  5. Lee SH, Jin YS, Heo SI, Shim TH, Sa JH, Choi DS, Wang MH. Composition analysis and antioxidant activity from different organs of Cirsium setidens Nakai. Korean J. Food Sci. Technol. 38: 571- 576 (2006)
  6. Ayasolla K, Khan M, Singh AK, Singh I. Inflammatory mediator and ${\beta}$-amyloid (25-35)-induced ceramide generation and iNOS expression are inhibited by vitamin E. Free Radical Bio. Med. 37: 325-338 (2004) https://doi.org/10.1016/j.freeradbiomed.2004.04.007
  7. Ayasolla KR, Giri S, Singh AK, Singh I. 5-Aminoimidazole-4- carboxamide-I-beta-4-ribofuranoside (AICAR) attenuates the expression of LPS- and A${\beta}$ peptide-induced inflammatory mediators in astroglia. J. Neuroinflam. 2: 21-42 (2005) https://doi.org/10.1186/1742-2094-2-21
  8. Sorescu GP, Song H, Tressel SL, Hwang J, Dikalov S, Smith DA, Boyd NL, Platt MO, Lassèque B, Griendling KK, Jo H. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress induces monocyte adhesion by stimulating reactive oxygen species production from a Nox-1-based NADPH oxidase. Circ. Res. 95: 773-779 (2004) https://doi.org/10.1161/01.RES.0000145728.22878.45
  9. Simoncini S, Sapet C, Camoin-Jau L, Bardin N, Harlé JR, Sampol J, Dignat-George F, Anfosso F. Role of reactive oxygen species and p38 MAPK in the induction of the pro-adhesive endothelial state mediated by IgG from patients with anti-phospholipid syndrome. Int. Immunol. 17: 489-500 (2005) https://doi.org/10.1093/intimm/dxh229
  10. Shimozawa M, Naito Y, Manabe H, Uchiyama K, Kuroda M, Katada K, Yoshida N, Yoshikawa Y. 7-Ketocholesterol enhances the expression of adhesion molecules on human aortic endothelial cells by increasing the production of reactive oxygen species. Redox Rep. 9: 370-375 (2004) https://doi.org/10.1179/135100004225006902
  11. Traore K, Sharma RB, Burek CL, Trush MA. Role of ROS and MAPK in TPA-induced ICAM-1 expression in the myeloid ML-1 cell line. J. Cell. Biochem. 100: 1010-1021 (2007) https://doi.org/10.1002/jcb.21101
  12. Deem TL, Cook-Mills JM. Vascular cell adhesion molecule-1 (VCAM-1) activation of endothelial cell matrix metalloproteinases: Role of reactive oxygen species. Blood 104: 2385-2393 (2004) https://doi.org/10.1182/blood-2004-02-0665
  13. Lee EJ, Kim KS, Jung HY, Kim DH, Jang HD. Antioxidant activities of garlic (Allium sativum L.) with growing districts. Food Sci. Biotechnol. 14: 123-130 (2005)
  14. Oyaizu M. Studies on product of browning reaction: Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. 44: 307-315 (1986) https://doi.org/10.5264/eiyogakuzashi.44.307
  15. Amarowicz R, Troszyñska A, Shahidi F. Antioxidant activity of almond seed extract and its fractions. J. Food Lipids 12: 344-358 (2005) https://doi.org/10.1111/j.1745-4522.2005.00029.x
  16. Song HS, Moon KY. In vitro antioxidant activity profiles of ${\beta}$- glucans isolated from yeast Saccharomyces cerevisiae and mutant Saccharomyces cerevisiae IS2. Food Sci. Biotechnol. 15: 437-440 (2006)
  17. Lee J, Lee SH, Min KR, Lee KS, Ro JS, Ryu JC, Kim Y. Inhibitory effects of hydrolysable tannins on ${Ca^2+}$-activated HAase. Planta Med. 59: 381-382 (1993) https://doi.org/10.1055/s-2006-959708
  18. Lee YM, Choi SI, Lee JW, Jung SM, Park SM, Heo TR. Isolation of hyaluronidase inhibitory component from the roots of Astraglus membranaceus Bunge (Astragali Radix). Food Sci. Biotechnol. 14: 263-267 (2005)
  19. Sawabe Y, Yamasaki K, Iwagami S, Kazimura K, Nakagommi K. Inhibitory effects of natural medicines on the enzymes related to the skin. Yakuga. Zasshi 118: 423-429 (1998) https://doi.org/10.1248/yakushi1947.118.9_423
  20. Park H, Sin BY, Kim HP. Inhibition of collagenase by antiinflammatory synthetic flavones. J. Appl. Pharmacol. 14: 36-39 (2006)
  21. Chattopadhyay S, Bhaumik S, Purkayastha M, Basu S, Chaudhuri AN, Gupta SD. Apoptosis and necrosis in developing brain cells due to arsenic toxicity and protection with antioxidants. Toxicol. Lett. 136: 65-76 (2002) https://doi.org/10.1016/S0378-4274(02)00282-5
  22. Dawson TM, Dawson VL. Nitric oxide: Actions and pathological roles. Neuroscientist 1: 7-18 (1995) https://doi.org/10.1177/107385849500100103
  23. Sutherland H, Khundkar R, Zolle O, McArdle A, Simpson AWM, Jarvis JC, Salmons S. A fluorescence-based method for measuring nitric oxide in extracts of skeletal muscle. Nitric Oxide 5: 475-481 (2001) https://doi.org/10.1006/niox.2001.0374
  24. Scheller M, Blobner M, Von Loewenich C, Schneck H, Stadler J, Franke C, Kochs E. The NO synthase inhibitors L-Name and LNMMA, but not L-arginine, block the mammalian nicotinic acetylcholine receptor channel. Toxicol. Lett. 100-101: 109-113 (1998) https://doi.org/10.1016/S0378-4274(98)00173-8
  25. Ludwig A, Lorenz M, Grimbo N, Steinle F, Meiners S, Bartsch C, Stangl K, Baumann G, Stangl V. The tea flavonoid epigallocatechin- 3-gallate reduces cytokine-induced VCAM-1 expression and monocyte adhesion to endothelia cells. Biochem. Bioph. Res. Co. 316: 659-665 (2004) https://doi.org/10.1016/j.bbrc.2004.02.099
  26. Corpe CP, Lee JH, Kwon O, Eck P, Narayanan J, Kirk KL, Levine M. 6-Bromo-6-deoxy- L-ascorbic acid: An ascorbate analog specific for ${Na^+}$-dependent vitamin C transporter but not glucose transporter pathways. J. Biol. Chem. 280: 5211-5220 (2005) https://doi.org/10.1074/jbc.M412925200
  27. Kim SJ. Development of analytical methods for flavones in Cirsium japonicum. PhD thesis, Duksung Women's University, Seoul, Korea (2004)
  28. Loizzo MR, Statti GA, Tundis R, Conforti F, Ando S, Menichini F. Antimicrobial activity and cytotoxicity of Cirsium tenoreanum. Fitoterapia 75: 577-580 (1994) https://doi.org/10.1016/j.fitote.2004.03.011
  29. Nuutila AM, Puupponen-Pimiä R, Aarni M, Oksman-Caldentey KM. Comparison of antioxidant activities of onion and garlic extracts by inhibition of lipid peroxidation and radical scavenging activity. Food Chem. 81: 485-493 (2003) https://doi.org/10.1016/S0308-8146(02)00476-4
  30. Safari MR, Sheikh N. Effects of flavonoids on the susceptibility of low-density lipoprotein to oxidative modification. Prostag. Leukot. Ess. 69: 73-77 (2003) https://doi.org/10.1016/S0952-3278(03)00085-1
  31. McPhail DB, Hartley RC, Gardner PT, Duthie GG. Kinetic and stoichiometric assessment of the antioxidant activity of flavonoids by electron spin resonance spectroscopy. J. Agr. Food Chem. 51: 1684-1690 (2003) https://doi.org/10.1021/jf025922v
  32. Tiwari AK. Imbalance in antioxidant defense and human diseases: Multiple approach of natural antioxidant therapy. Curr. Sci. India 81: 1179-1187 (2001)
  33. Leirisalo-Repo M, Paimela L, Koskimies S, Repo H. Functions of polymorphonuclear leukocytes in early rheumatoid arthritis. Inflammation 17: 427-442 (1993) https://doi.org/10.1007/BF00916583
  34. Farber JL. Mechanisms of cell injury by activated oxygen species. Environ. Health Persp. 102: 17-24 (1994) https://doi.org/10.1289/ehp.94102s617
  35. Babior BM. The respiratory burst oxidase. Adv. Enzymol. RAMB 65: 49-95 (1992)
  36. Leusen J, Verhoeven A, Roos D. Interactions between the components of the human NADHP oxidase: Intrigues in the phox family. J. Lab. Clin. Med. 128: 461-476 (1996) https://doi.org/10.1016/S0022-2143(96)90043-8
  37. Shatwell K, Segal A. NADHP oxidase. Int. J. Biochem. Cell B. 28: 1191-1195 (1996) https://doi.org/10.1016/S1357-2725(96)00084-2
  38. Valentine JS, Wertz DL, Lyons TJ, Liou LI, Goto JJ, Gralla EB. The dark side of dioxygen biochemistry. Curr. Opin. Chem. Biol. 2: 253- 262 (1998) https://doi.org/10.1016/S1367-5931(98)80067-7
  39. Duh PD. Antioxidant activity of burdock (Arctium lappa Linne): Its scavenging effect on free radical and active oxygen. J. Am. Oil Chem. Soc. 75: 455-461 (1998) https://doi.org/10.1007/s11746-998-0248-8
  40. Gordon MH. The mechanism of antioxidant action in vitro. pp. 1- 18. In: Food Antioxidants. Hudson BJF (ed). Elsevier, London, UK (1990)
  41. Guo J, Wang MH. Antioxidant and antidiabetic activities of Ulmus davidiana extracts. Food Sci. Biotechnol. 16: 55-61 (2007)
  42. Padayatty SJ, Levine M. New insights into the physiology and pharmacology of vitamin C. Can. Med. Assoc. J. 164: 353-355 (2001)
  43. Sawabe Y, Nakagomi K, Iwagami S, Suzuki S, Nakazawa H. Inhibitory effects of pectic substances on activated hyaluronidase and histamine release from mast cells. Biochim. Biophys. Acta 1137: 274-278 (1992) https://doi.org/10.1016/0167-4889(92)90147-4
  44. Edelstam GA, Laurent UB, Lundkvist OE, Fraser JR, Laurent TC. Concentration and turnover of intraperitoneal hyaluronan during inflammation. Inflammation 16: 459-469 (1992) https://doi.org/10.1007/BF00918972
  45. Noble PW, Mackee CM, Coweman M, Shin HS. Hyaluronan fragments activate an NF-kappa B/I-kappa B alpha autoregulatory loop in murine macrophages. J. Exp. Med. 183: 2373-2378 (1996) https://doi.org/10.1084/jem.183.5.2373
  46. Park H, Sin BY, Kim HP. Inhibition of collagenase by antiinflammatory synthetic flavones. J. Appl. Pharmacol. 14: 36-39 (2006)
  47. Stenman M, Ainola M, Valmu L, Bjartell A, Ma G, Stenman UH, Sorsa T, Luukkainen R, Konttinen YT. Trypsin-2 degrades human type II collagen and is expressed and activated in mesenchymally transformed rheumatoid arthritis synovitis tissue. Am. J. Pathol. 167: 1119-1124 (2005) https://doi.org/10.1016/S0002-9440(10)61200-X
  48. Nagase H, Wossener JF. Matrix metalloproteinases. J. Biol. Chem. 274: 21491-21494 (1999) https://doi.org/10.1074/jbc.274.31.21491
  49. Hanemaaijer R, Sorsa T, Konttinen YT, Ding Y, Suitinen M, Visser H, van Hinsbergh VW, Helaakoski T, Kainulainen T, Ronka H, Tschesche H, Salo T. Matrix metalloproteinase-8 is expressed in rheumatoid synovial fibroblast and endothelial cells. Regulation by tumor necrosis factor-alpha and doxycycline. J. Biol. Chem. 272: 31504-31509 (1997) https://doi.org/10.1074/jbc.272.50.31504
  50. Knauper V, Lopez-Otin C, Smith B, Knight G, Murphy G. Biochemical characterization of human collagenase-3. J. Biol. Chem. 271: 1544-1550 (1996) https://doi.org/10.1074/jbc.271.3.1544
  51. Koivunen E, Arap W, Valtanen H, Rainisalo A, Medina OP, Heikkila P, Kantor C, Gahmberg CG, Salo T, Konittinen YT, Sorsa T, Ruoslahti E, Pasqualini R. Tumor targeting with a selective gelatinase inhibitor. Nat. Biotechnol. 17: 768-774 (1999) https://doi.org/10.1038/11703
  52. Tatamoto H, Muto N, Yim SD, Nakada T. Anti-hyaluronidase oligosaccharide derived from chondroitin sulfate A effectively reduces polyspermy in vitro fertilization of porcine oocytes. Biol. Reprod. 72: 127-134 (2005) https://doi.org/10.1095/biolreprod.104.032813
  53. Seaton GL, Hall L, Jones R. Rat sperm 2B1 glycoprotein (PH20) contains a C-terminal sequence motif for attachment of a glycosyl phosphatidylinositol anchor. Effects of endoproteolytic cleavage on hyaluronidase activity. Biol. Reprod. 62: 1167-1676 (2000)
  54. Sin BY, Kim HP. Inhibition of collagenase by naturally-occurring flavonoids. Arch. Pharm. Res. 28: 1152-1155 (2005) https://doi.org/10.1007/BF02972978
  55. Li M-W, Yudin AI, Vande Voort CA, Sabeur K, Primakoff P, Overstreet JW. Inhibition of monkey sperm hyaluronidase activity and heterologous cumulus penetration by flavonoids. Biol. Reprod. 56: 1383-1389 (1997) https://doi.org/10.1095/biolreprod56.6.1383
  56. Belmont HM, Levartovsky D, Goel A, Amin A, Giorno R, Rediske J, Skovron ML, Abramson SB. Increased nitric oxide production accompanied by the up-regulation of inducible nitric oxide synthase in vascular endothelium from patients with systemic lupus erythematosus. Arthritis Rheum. 40: 1810-1816 (1997) https://doi.org/10.1002/art.1780401013
  57. Amin AR, Attur M, Abramson SB. Nitric oxide synthase and cyclooxygenases: Distribution, regulation, and intervention in arthritis. Curr. Opin. Rheumatol. 11: 202-209 (1999) https://doi.org/10.1097/00002281-199905000-00009
  58. Scuro LS, Simioni PU, Grabriel DL, Saviani EE, Modolo LV, Tamashiro WMSC, Salgado I. Suppression of nitric oxide production in mouse macrophages by soybean flavonoids accumulated in response to nitroprusside and fungal elicitation. BMC Biochem. 5: 5-12 (2004) https://doi.org/10.1186/1471-2091-5-5
  59. Kang JS, Jeon YJ, Kim HM, Han SH, Yang KH. Inhibition of inducible nitric-oxide synthase expression by silymarin in lipopolysaccharide-stimulated macrophages. J. Pharmacol. Exp. Ther. 302: 138-144 (2002) https://doi.org/10.1124/jpet.302.1.138
  60. Lin HY, Juan SH, Shen SC, Hsu FL, Chen YC. Inhibition of lipopolysaccharide-induced nitric oxide production by flavonoids in RAW264.7 macrophages involves heme oxygenase-1. Biochem. Pharmacol. 66: 1821-1832 (2003) https://doi.org/10.1016/S0006-2952(03)00422-2
  61. Amrani Y, Chen H, Panettieri R. Activation of tumor necrosis factor receptor 1 in airway smooth muscle: A potential pathway that modulates bronchial hyper-responsiveness in asthma? Respir. Res. 1: 49-53 (2000) https://doi.org/10.1186/rr12
  62. Broide DH, Lotz M, Cuomo AJ, Coburn DA, Federman EC, Wasserman SI. Cytokines in symptomatic asthma airway. J. Allergy Clin. Immun. 89: 958-967 (1992) https://doi.org/10.1016/0091-6749(92)90218-Q
  63. Choi JS, Choi YJ, Park SH, Kang JS, Kang YH. Flavones mitigate tumor necrosis factor-alpha-induced adhesion molecule upregulation in cultured human endothelial cells: Role of nuclear factor-kappa B. J. Nutr. 134: 1013-1019 (2004)
  64. Sluss HK, Barrett T, Dérijard B, Davis RJ. Signal transduction by tumor necrosis factor mediated by JNK protein kinases. Mol. Cell. Biol. 14: 8376-8384 (1994) https://doi.org/10.1128/MCB.14.12.8376
  65. Maksimowicz-McKinnon K, Bhatt DL, Calabrese LH. Recent advances in vascular inflammation: C-reactive protein and other inflammatory biomarkers. Curr. Opin. Rheumatol. 16: 18-24 (2004) https://doi.org/10.1097/00002281-200401000-00005
  66. Koskinen PK, Lemstrom KB. Adhesion molecule P-selectin and vascular cell adhesion molecule-1 in enhanced heart allograft arteriosclerosis in the rat. Circulation 95: 191-196 (1997) https://doi.org/10.1161/01.CIR.95.1.191
  67. Silverman MD, Zamora DO, Pan Y, Texeira PV, Planck SR, Rosenbaum JT. Cell adhesion molecule expression in cultured human iris endothelial cells. Invest. Ophthalmol. Vis. Sci. 42: 2861- 2866 (2001)
  68. Lee CW, Lin WN, Lin CC, Luo SF, Wang JS, Pouyssegur J, Yang CM. Transcriptional regulation of VCAM-1 expression by tumor necrosis factor-${\alpha}$ in human tracheal smooth muscle cells: Involvement of MAPKs, NF-${\kappa}$ B, p300, and histone acetylation. J. Cell. Physiol. 207: 174-186 (2006) https://doi.org/10.1002/jcp.20549