References
-
Yang SO, Chang PS, Lee JH. Isoflavone distribution and
${beta}$ - glucosidase activity in 'cheonggukjang', a traditional Korean whole soybean-fermented food. Food Sci. Biotechnol. 15: 96-101 (2006) - Lee JH, Renita M, Fioritto RJ, Martin SKS, Schwartz SJ, Vodovotz Y. Isoflavone characterization and antioxidant activity of Ohio soybeans. J. Agr. Food Chem. 52: 2647-2651 (2004) https://doi.org/10.1021/jf035426m
- Satué-Gracia MT, Heinonen M, Frankel EN. Anthocyanins as antioxidants on human low-density lipoprotein and lechitinliposome systems. J. Agr. Food Chem. 45: 3362-3367 (1997) https://doi.org/10.1021/jf970234a
- Wang H, Cao G, Prior RL. Oxygen radical absorbing capacity of anthocyanins. J. Agr. Food Chem. 45: 304-309 (1997) https://doi.org/10.1021/jf960421t
- Lee CH, Yang L, Xu JZ, Yeung SYV, Huang Y, Chen ZY. Relative antioxidant activity of soybean isoflavones and their glycosides. Food Chem. 90: 735-741 (2005) https://doi.org/10.1016/j.foodchem.2004.04.034
- Hu CC, Hsiao CH, Huang SY, Fu SH, Lai CC, Hong TM, Chen HH, Lu FJ. Antioxidant activity of fermented soybean extract. J. Agr. Food Chem. 52: 5735-5739 (2004) https://doi.org/10.1021/jf035075b
- Kwon TW, Song YS, Kim JS, Moon GS, Kim JI, Honh JH. Current research on the bioactive functions of soyfoods in Korea. J. Korean Soybean Digest 15: 1-12 (1998)
- Weidenborner M, Hindorf H, Jha HC, Tsotsonos P, Egge H. Antifungal activity of isoflavonoids indifferent reduced stage on Rhizoctonia solani and Sclerotium rolfsii. Phytochemistry 29: 801- 803 (1990) https://doi.org/10.1016/0031-9422(90)80022-9
- Graber M, June CH, Samelson LE, Weiss A. The protein tyrosine kinase inhibitor Herbimycin-A, but not genistein, specifically inhibits signal transduction by the T-cell antigen receptor. Int. Immunol. 4: 1201-1210 (1992) https://doi.org/10.1093/intimm/4.11.1201
- Hendrich S, Lee KW, Xu X, Wang HJ, Murphy PA. Defining food components as new nutrients. J. Nutr. 124: 1789S-1792S (1994)
- Bettini V, Fiori A, Martino R, Mayellaro R, Ton P. Study of the mechanism whereby anthocyanosides potentiate the effect of catecholamines on coronary vessels. Fitoterapia 54: 67-72 (1985)
- Anthony MS, Clarkson TB, Williams JK. Effects of soy isoflavones on atherosclerosis: Potential mechanisms. Am. J. Clin. Nutr. 68: 1390S-1393S (1998) https://doi.org/10.1093/ajcn/68.6.1390S
- Setchell KDR, Cassidy A. Dietary isoflavone: Biological effects and relevance for human health. J. Nutr. 129: 758S-767S (1999) https://doi.org/10.1093/jn/129.3.758S
- Lee JH, Lee BW, Kim JH, Jeong TS, Kim MJ, Lee WS, Park KH. LDL-antioxidant pterocarpans from roots of Glycine max (L.) Merr. J. Agr. Food Chem. 54: 2057-2063 (2006) https://doi.org/10.1021/jf052431c
- Lee JH, Seo WD, Jeong SH, Jeong TS, Lee WS, Park KH. Human acyl-CoA: Cholesterol acyltransferase inhibitory effect of flavonoids from roots of Glycine max (L.) Merr. Agr. Chem. Biotechnol. 49: 57-61 (2006)
- Miyazawa M, Sakano K, Nakamura S, Kosaka H. Antimutagenic activity of isoflavones from soybean seeds (Glycine max Merrill). J. Agr. Food Chem. 47: 1346-1349 (1999) https://doi.org/10.1021/jf9803583
- Kim JA, Hong SB, Jung WS, Yu CY, Ma KH, Gwag JG, Chung IM. Comparison of isoflavones composition in seed, embryo, cotyledon, and seed coat of cooked-with-rice and vegetable soybean (Glycine max L.) varieties. Food Chem. 102: 738-744 (2007) https://doi.org/10.1016/j.foodchem.2006.06.061
- Todd JJ, Vodkin LO. Pigmented soybean (Glycine max) seed coats accumulate proanthocyanidins during development. Plant Physiol. 102: 663-670 (1993) https://doi.org/10.1104/pp.102.2.663
- Choung MG. Structural analysis of black common bean (Phaseolus vulgaris L.) anthocyanins. Food Sci. Biotechnol. 14: 672-675 (2005)
-
Kim HJ, Tosy I, Park JM, Chung JI, Shin SC, Chang KC. Anthocyanins from soybean seed coat inhibit the expression of TNF-
${\alpha}$ - induced genes associated with ischemia/reperfusion in endothelial cell by NF-${\kappa}$ B-dependent pathway and reduce rat myocardial damages incurred by ischemia and reperfusion in vivo. FEBS Lett. 580: 1391-1397 (2006) https://doi.org/10.1016/j.febslet.2006.01.062 - Takahashi R, Ohmori R, Kiyose C, Momiyama Y, Ohsuzu F, Kondo K. Antioxidant activities of black and yellow soybeans against low density lipoprotein oxidation. J. Agr. Food Chem. 53: 4578-4582 (2005) https://doi.org/10.1021/jf048062m
- Takahata Y, Ohnishi-Kameyama M, Furuta S, Takahashi M, Suda I. Highly polymerized procyanidins in brown soybean seed coat with a high radical-scavenging activity. J. Agr. Food Chem. 49: 5843- 5847 (2001) https://doi.org/10.1021/jf010307x
- Mayer AM, Harel E. Phenoloxidases and their significance in fruit and vegetables. pp. 373-398. In: Food Enzymology. Fox PE (ed). Elsevier Press, Inc., London, UK (1998)
- Robb DA. Tyrosinase. Vol. II, pp. 207-240. In: Copper Proteins and Copper Enzymes. Lontie R (ed). CRC Press, Inc., Boca Raton, EL, USA (1984)
- Mayer AM. Polyphenol oxidases in plants-recent progress. Phytochemistry 26: 11-20 (1995) https://doi.org/10.1039/9781847554758-BP011
- Kubo I, Kinst-Hori I, Kubo Y, Yamagiwa Y, Kamikawa T, Haraguchi H. Molecular design of antibrowing agents. J. Agr. Food Chem. 48: 1393-1399 (2000) https://doi.org/10.1021/jf990926u
- Gardner HW. Biological roles and biochemistry of the lipoxygenase pathway. Hortscience 30: 197-205 (1995)
- Kris-Etherton PM, Keen CL. Evidence that the antioxidant flavonoids in tea and cocoa are beneficial for cardiovascular health. Curr. Opin. Lipidol. 13: 41-49 (2002) https://doi.org/10.1097/00041433-200202000-00007
- Grechkin A. Recent developments in biochemistry of the plant lipoxygenase pathway. Prog. Lipid Res. 37: 317-352 (1998) https://doi.org/10.1016/S0163-7827(98)00014-9
- Gibian MJ, Galaway RA. Steady-state kinetics lipoxygenase oxygenation of unsaturated fatty acid. Biochemistry 15: 4209-4214 (1976) https://doi.org/10.1021/bi00664a012
- Park YK, Lee WY, Park SY, Ahn JK, Han MS. Antioxidant activity and total phenolic content of Callistemon citrinus extracts. Food Sci. Biotechnol. 14: 212-215 (2005)
- Braca A, De Tommasi N, Di Bari L, Pizza C, Politi M, Morelli I. Antioxidant principles from Bauhinia terapotensis. J. Nat. Prod. 64: 892-895 (2001) https://doi.org/10.1021/np0100845
- Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying improved ABTS radical cation decolorization assay. Free Radical Bio. Med. 26: 1231-1237 (1999) https://doi.org/10.1016/S0891-5849(98)00315-3
- Ha TJ, Tamura S, Kubo I. Effects of mushroom tyrosinase on anisaldehyde. J. Agr. Food Chem. 53: 7024-7028 (2005) https://doi.org/10.1021/jf047943q
- Ha TJ, Kubo I. Lipoxygenase inhibitory activity of anacardic acids. J. Agr. Food Chem. 53: 4350-4354 (2005) https://doi.org/10.1021/jf048184e
- Coperland RA. Enzyme: A Practical Introduction to Structure, Mechanism, and Data Analysis. Wiley-VCH, New York, NY, USA. pp. 266-332 (2000)
- Mayer AM, Harel E, Ben-Shaul R. Assay of catechol oxidase-A critical comparison of methods. Phytochemistry 5: 783-789 (1966) https://doi.org/10.1016/S0031-9422(00)83660-2