YH TH LN HiEt2 2ELA ZEHE

Open Source Project Management-from a
Behavior Control Perspective

X & 7] un Gee Cho) M= FHAEEYT Ui}

&

ok

Lok

Q ok

HAg AnEold HEUE $R] QEALA ANEYoEo] SAFORE A, LEAL2 (B
BAZE A Z2AEC gE gAY #lo] n2HIL YE s, 8L ZRAES] FH Y
Zd0] Bg ATEL w Folry] 4A% Aot oy e HollA B =g 71E AFAY
HRA2E Ao 485 Agde] o8B0 2EZ4aA TRAEE IR A8 F Y=
Ag AHRDA S G BN 28ste AT PH e B Este A A elA
SEA~ ZEAEFO 8 #YHT YV} S BAE AsAT AEAH A4S T4,
B ATE FAAL AGE QoA ABAA Fol 5L EARATY, AMHOR L FLA LRAE
deo] glo] dFE ey B PYAEAT} o) FolAT vt AL FlstAn. oleld THL &2
a2 Z2AEE I B4 FYEAV A7) oty HE 7€ 98 AFAEY FA dAH
gt SZAn Z2AE gl #% B} v 22H2 23 ol E M FF 2HFA
g AN BEAAA EZgEE 2 o SdiE A7 948 AR By
FIHE : 2E22 FA, JHEA, ZE2HE FI, AH AT

[. Introduction

With the arrival of commercially successful open
source software packages whose quality is considered
to be comparable to that of commercial software giants,
open source software development has drawn atten-
tion by many software development entities (Bollin-
ger et al., 1999; McConnell, 1999; Paulson ef al.,
2004). With respect to applying controls of ISD proj-

¥ 1 would like to thank Dr. Lome Olfman for his

helpful comments and suggestions on this work.

ects, however, there are a number of challenges posed
by open source communities, including lack of mech-
anisms(e.g., rewards and punishments and structural
hierarchy), supporting controls, and difficulty to de-
fine the boundary of control, especially in terms of
controlees and project objectives.

Open source communities typically perform soft-
ware development online using virtual channels.
Unlike traditional ISD projects, the open source com-
munity does not allow exclusive privileges to organ-
izational participants and major contributors. The pr-
inciple of equality of membership is regarded as one

2008. 8.

235

x

7

i

of the reasons behind difficulties of organizational
control in open source software development{Jensen
and Scacchi, 2005). Open source project communities
are known to have a core-periphery structure with
corresponding distinctive roles(AlMarzouq et al.,
2005; Crowston et al., 2006; Iannacci, 2005). In addi-
tion, many open source projects are initiated by in-
dividual developers who have only ideas or proto-
types. With the progress of a project, bugs are re-
moved and features are added, making software more
useful and less imperfect, yet the original goal be-
comes more complicated and multi-faceted.

Another understanding about open source software
projects is that their activities rely on virtual commum-
ities to foster knowledge activities(Lakhani and Hip-
pel, 2002). This view is supported by the fact that one
of the motivations of participants is learning through
participation{AlMarzouq et al., 2005; Hippel and
Krogh, 2003). Participants exchange knowledge thro-
ugh complex interactions in community practices.

These characteristics of open source software proj-
ects which are different from those of traditional soft-
ware projects raise a question whether knowledge of
traditional ISD project management is applicable in
open source software projects, which comprise new
contextual settings. A control mechanism, one of key
concepts in the management of traditional ISD proj-
ects, is one of the factors which has attracted re-
searchers’ interests.

In an attempt to increase the knowledge about ISD
management in a new emerging software develop-
ment context, this study explored control mechanisms
in open source projects. To narrow the research
scope, this paper focuses on behavior control, which
can be a meaningful research topic given that a num-
ber of researchers argue that socio-political and hu-
man aspects overwhelm structural aspects of open
source projects(Lane and Basnet 2003). Some argue

that behavior control is even infeasible in open source
software ISD projects because behavior control po-
tentially hinders participants’ autonomy, which an im-
portant aspect of the innovation process relies(Xu et
al., 2005; Nidumolu and Subramani 2003).

The main research question of this study is whether
open source software development projects construct
any behavior control strategy. To find the answer,
this study used a case study approach based on Yin
(2003). This research aims at contributing to general-
ize our understanding about ISD project control, and
based on such understanding, principles of control in
one context may become reusable in another through
a series of systematic interpretations of those pri-
neiples.

. Previous Research

Regarding control over traditional ISD projects, a
number of researchers have studied collective activ-
ities of a group unit(a team) including established pro-
cedures and standards for compensation and penalties
on behaviors and outcomes(Choudhury and Sabher-
wal, 2003; Henderson and Lee, 1992; Kirsch, 1997),
and based on the concept of managerial control. In
the managerial discipline, researchers classify control
into two modes: formal and informal(Ouchi, 1979,
1980; Eisenhardt, 1985; Manz et al., 1987). They di-
vide formal control into behavioral control and out-
come control based on whether controlled tasks are
observable(observability) or measurable(measurabil-
ity). They view informal control as either clan control
and self control. Informal controls are derived from
organizational decisions when they lack of conditions
for formal controls. Organizations utilize clan control
on common values, cultures, and norms existing in
the organizations, or self control based on character-
istics(professional and non-routine tasks).

236

Information Systems Review, Vol.10, No.2

ool EH MM viRtE 2ELA ZZHE M|

Following the concepts of managerial control, re-
searchers perceived that organizations control ISD
projects by combining control mechanisms(a portfo-
lio) which are chosen based on contextual conditions
before and during ISD projects(Kirsch 1996, 1997,
Choudhury and Sabherwal, 2003). These researchers
see task characteristics(observability, measurability,
project size, etc.), role expectations, and project-re-
lated knowledge and skills as factors influencing or-
ganizational decisions on control mechanisms(Kirsch
1997). The contextual settings of these factors can
be changed over time and across control mecha-
nisms(Kirsch 1997, Choudhury and Sabherval 2003).

On the other hand, a number of researchers per-
ceive open source ISD as an alternative methodology
to traditional methodology of software develop-
ment{e.g., Rapid Application Development) (Feller
and Fitzgerald, 2000, McConnell, 1999). The basic
idea behind open source ISD is nicely explained as
follows: “When programmers can read, redistribute,
and modify the source code for a piece of software,
the software evolves. People improve it, people adapt
it, and people fix bugs.”’ The production of large
scale and quality software packages such as Apache,
Linux, and eClipse have drawn attention to open
source software development.

Through an empirical observation, Raymond(1999)
explains that open source development draws more
eyes to watch source code, increasing the likelihood
of discovering code bugs. This enables developers to
concentrate more on code production than retro-
spective code checking, resulting in high quality sou-
rce software.

Several studies present the observations of control
of open source ISD directly and indirectly. Through

1) http://www.opensource.orgfaccessed on July 31,
2008.

a content analysis of a set of published case studies
of open source software, Gallivan(2001) investigated
the influence of control and trust in open source ISD
performance. His findings show that control functions
are an important criterion for efficiency. He interprets
this finding by applying the structural concept of open
source communities, which is observed to have a
core-periphery shape(AlMarzouq et al., 2005; Crowston
et al., 2006). Community members continuously move
between core and periphery. Some researchers note
that open source communities perform control over
members through sanctions and rewards(Fang and
Neufeld, 2006; Markus ez al., 2000). Raymond(1999)
argues that reputation is the key behind such con-
formity to community rules.

The interpretive studies of control types explain
that certain types of formal controls are not feasible
to apply in open source projects(Lane and Basnet,
2005; Xu, et al., 2005). Open source communities
are perceived as virtual organizations(Gallivan, 2001).
As the observation of behaviors is not feasible in this
context, the application of formal controls is consid-
ered to be limited. Xu et al.(2005) argue that open
source ISD is without behavior control. They under-
stand that open source software development is an
incremental innovation process based on participants’
autonomy and initiatives, and pre-defined procedures
impede such process.

Tannacci(2003) reports that there are three coordi-
nation mechanisms in the open source community:
standardization, loose coupling, and partisan mutual
adjustment. The open source community uses pre-
defined procedures and routines as a standard. In a
large scale ISD like Linux, multiple subgroups coop-
erate under independent authority. Participants in
open source projects construct a social network while
pursuing their local interests in the physical environ-

ments. Thus, the coordination occurs through con-

2008. 8.

237

e

7|

M

tinuous adjustments of individuals between their lo-
calized interests(subgroups) and emergent structures
constructed through a few particular projects that ap-
peal to them.

Lattemann and Stieglitz(2005) suggest three types
of governance exist in open source communities: di-
rect, indirect, and social. Direct governance refers to
control by monitoring behaviors(behavior control).
Evaluation of outputs compared to intended goals
(output control) becomes indirect governance. Social
governance concetns conformity to community rules
and cultures. Although Lattemann and Stieglitz’s ob-
servations use many different terms to explain con-
trols in open source software development, these con-
trols are equivalent to control types of researches of
traditional ISD projects. The goals and contextual sit-
uations of specific controls observed in their study
are not different from those of traditional ISD
projects.

II. Research Approach and
Methodology

To find out whether behavior control is exercised
in the open source ISD context, this research collected
and analyzed explicit data of activities of six selected
open source projects from Sourceforge.net, which is

the largest open source hosting service. The research

process followed the case study guidelines outlined
by Yin(1993, 2003) and Miles and Huberman(1984).
This research searched for determinations of controls
and related circumstantial conditions by observing
publicly available communications of open source
project teams. In order to focus on managerial project
leaders’ decisions to control project activities, this re-
search concentrated on the communications of project
leaders with other participants. Potential instances of
critical transformations of structures and behaviors
were determined based on key episodes such as de-
bates, arguments, discussions, and resolutions appear-
ing in multiple communication threads over time.

3.1 Pilot Study

PILOT STUDY APPROACH

Yin(1993, 2003) explains that the case study can
be considered as a type of experiment. He advises
researchers studying multiple cases to deal with each
case as a subject of an experiment, and replicate the
study of one case in analyzing another. For repli-
cation, I reviewed whether instances of behavior con-
trol uncovered in one case were to be found in other
cases, and investigated whether conditions underlying
those controls were also discovered in other cases(a
theoretic replication). Based on results of previous
studies about controls of outsourced ISD projects

(Table 1) Data template of Behavior Control

Project plan, project meeting, progress ° Planning: Project plan or project roadmap, To-Do lists

report(check), walkthrough, documentation, o Documentation: FAQ, wiki, manuals, help

standards, conference calls(e-mails), any > Quality Assurance: a series of processes to improve

collocation, quality assurance process, quality(testing, releasing candidate),

personnel(member) change o Rule Construction: standards(coding and naming
convention for code submission), specific working
procedures

238 Information Systems Review, Vol.10, No.2

9| EX| DoA tiEtE QEAA ZRNE 2|

{Choudhury and Sabherwal, 2003), I constructed a
data template matrix(Miles and Huberman, 1994;
Yin, 2003). The matrix included control practices ex-
ercised at the operational level, such as documents,
scheduling, specification, and procedural protocols.
Using a draft of the template, 1 conducted a pilot
test by observing the public and longitudinal data of
one open source 1SD project.

<Table 1> displays the initial data template and
its revision based on the analysis of the pilot case.
The term “project roadmap” is frequently used to re-
fer to the project plan of traditional ISD projects.
Participants used both terms to indicate the abstract
level of project plans. From the roadmap, readers can
find information about variations of features of the
upcoming versions. The project team produced a
number of online documents. They are FAQs, a man-
ual for developers, and a user guide. Because the proj-
ect community has global participation, a few un-
official online documents were also available to serve
specific foreign language speakers. Documents for
developers detailed conventions on source code(e.g.,
a mixed use of Java and C++) and concepts of mod-
ules, and mandated code contributors comply with the
specified standards.2) Online documents also showed
the project team’s concerns about unacceptable be-

haviors such as vandalism in community resources.

3.2 Trust issues of the research

RELATED TRUST ISSUES

Most empirical researchers must face four quality
issues of construct validity, internal validity, external
validity, and reliability(Yin, 1993, 2003). According

to Yin, internal validity is only applicable in ex-

2) http://dev.fckeditor.net/wiki/CodingStyle accessed
on July 31, 2008.

planatory and causal studies. External validity refers
to the ability of the study’s findings to be generalized.
Reliability defines the level of effectiveness of a
study’s findings to be replicable. A research study
using case methodology also should address general
quality issues. This study follows Yin's advice to ad-
dress quality issues(Yin, 2003). Thus, I utilized mul-
tiple sources of evidence and key informants’ review
of draft case study reports for construct validity, pat-
tern-matching for internal validity, replication logic
in multiple-cases for external validity, and database

and script notes for reliability.

Construct Validity

Operational Measures

In this research, I presumed that contextual factors
would have causal relationship with control practices.
Using a data template <Table 1> that could limit the
scope of the observation to a few specific aspects
of cases, I explored patterns of controls in the data.
The use of a data template and pattern matching of
cases in this study allowed me to make inferences
of the relationship between behavior control and par-
ticipants’ practices, rather than deterministic and
strong causal relationships between them.

External Validity

For external validity issues, Yin(1993, 2003) sug-
gests theory based research design and the use of ana-
lytic generalization in multiple cases. Unlike quantita-
tive study, case research is not strong enough to pres-
ent theoretic generalization(statistical generalization).
Thus, statistical sampling is not appropriate in case
studies. Instead, anatytical generalization through the
investigation of multiple cases is suggested in the
case research. Following Yin’s suggestion, I chose

a multiple case study approach.

2008. 8,

239

=

7]

¥

Reliability

Yin(2003) advises to address reliability issues by
building a database and research protocols. The data-
base and research protocols help the researcher and
others replicate the case study research. This study
collected public online data using a web-crawler and
stored the collected data in a database and file folders.
In addition, a case study protocol was produced and
revised after studying the pilot case.

3.3 Case Selection

Basic criteria were drawn from the descriptive in-
formation of open source projects provided by Sou-
rceforge.net, which had more than one million regis-
tered members as of May 2007(when the data collec-
tion took place). Although there are many alternative
systems for communications to support open source
ISD projects, such as code repositories and code com-
pilation, the number of hosted projects is comparably
limited to represent general features of open source
projects.3)

Based on the descriptive information available
about Sourceforge.net projects, six projects were se-
lected using three criteria: software taxonomy, the
size of teams, and download statistics. Statistics of
software downloads and the size of project teams are
perceived as potential measures to determine the suc-
cess of an individual open source project(Crowston
et al., 2004). Sourceforge.net classifies hosted proj-
ects based on a software taxonomy which includes

3) http://www.ibiblio.org/fosphost/exhost.htm
accessed on July 31, 2008;
http://en. wikipedia.orgfwiki/Comparison_of_free_s
oftware_hosting_facilities accessed on July 31,
2008;
http://en.wikipedia.org/wiki/Portal:Free_software
accessed on July 31, 2008.

types such as communication, database, desktop, edu-
cation, etc. The case projects selected for this research
had more than five developers and at least 500,000
file downloads as of May 2007. These six projects
belong to system or applied(office/business) groups
of hosted projects. However, five projects were ac-
tually used in data analysis since the project admin-
istrator of one project refused to allow his interview

session to be used.®

3.4 Data Collection and Processing

SOURCES OF EVIDENCE

Among six recommended sources of data sug-
gested by Yin(2003), this research focused on doc-
umentation and archival records of development
activities. Documentation in this research included in-
formation available on the project website, various
project related documents such as FAQs, guides and
manuals for users and other developers, how-tos, poli-
cies, etc. Archival records were forum messages, mail
messages, announcements, and trackers of bugs, fea-
tures and patches. At the same time, I collected and
examined records of development activities stored in
the version control system of projects(e.g., CVS,
SVN: subversion). Data of development activities in-
cluded number of lines of updates and commits of
source code by developers, and a timeline of case
activities and issues.

While reviewing the collated messages by topic,
I marked relevant information on the margin space
of transcripts when control practices specified in the
data template were encountered. Sequences of con-
trols were analyzed to get insight about management

4) The Claremont Graduate University Institutional
Review Board approved the research approach,
which informed all interviewees that they were free
to drop out of the project at any time.

240

Information Systems Review, Vol.10, No.2

a9l E4 BEolM vlEke QE4A Z2HE Ba)

of open source ISD projects and structural changes
over time. After reviewing the communication con-
tents, the marked contents were assembled in a sprea-
dsheet file for each case. For data reduction(Miles
and Huberman, 1994), these spreadsheet data were
further reduced into a table containing the chronicle
data of control practices of each case <Figure 1>,

IV. Data analysis and Discu-
ssions

4.1 Overview of Case Projects(see
(Table 2))

‘FreeMind’ is an open source mind mapper(or a
cognitive mapping tool). Its features include hier-
archical representation of data, basic drawing func-
tions(lines connecting contents), and folding of con-
tents. The project team focuses on developing ‘Free-
Mind’ as a knowledge management tool. ‘FreeMind’
was originally aimed at being developed as an editor,

Discussion Forums: Open DFscussion

a mind mapper, a collaboration tool, and a web browser.
It is the mind mapper, however, which remains as
the main feature of the current version of ‘FreeMind’.
Users of ‘FreeMind’ have various contextual back-
grounds and purposes: personal use, project manage-
ment, system development, education, and so forth.

‘FreeNAS’ is an open source NAS(Network Atta-
ched Storage) server based on the free BSD operating
system. It supports various network protocols(CIFS:
Samba, FTP, NFS, AFP, RSYNC, SSH, Unison, and
iSCSI) for data transfer over networks. It provides
the features of RAID(Redundant Array of Indepe-
ndent Drives) 0, 1, and 5, IBOD, disk encryption,
web-based configuration, and SMART(Self-Monitor-
ing Analysis and Reporting Technology). The project
team recently became a multi-developer team. The
motivation of this project was to develop a NAS serv-
er for personal purposes in order to provide features
not supported by existing free and commercial NAS
applications.

‘KeePass’(‘KeePass’ Password Safe) is a free, mul-

ti-platform, and open source password manager work-

3, Episede-Template s
. g MOt Casey
B e ot ma ot
ad Pl To-Do tists
. R
Pt

.
assUrANCe PrOCess, personnet
(memper) change

| inoking far progect mansger

o for = futurs draction

(Figure 1) Data Collection

2008. 8.

241

. statisti
‘ June 2000~May | 14,249(4,046 topics) 2,0.20(220 260 mail me‘ssages statistics
FreeMind L. topics), 227 | of file repository(CVS),
2007 by 1200 participants . . g
participants | project documents, wiki
il , Statisti
FreeNAS October 11,682(2,530 topics) :8311;()36;64 ﬁgﬁlf e mseistzag?(SZVSS) o
2005~May 2007 | by 1800 participants Pics), NG A
participants | project documents
- &l “tori
KeePass November 12,943(1,990 topics) ?;7?035()441943 (Séa\tflzn:idOfSVlI:) repr(;s'lecotrles
2003~May 2007 | by S00 participants pLes), > Pl
participants | documents
. 3,573(1,130 . .
PHPMyAdmin June 2000 ~May 13,402(3,009 'tOpICS) opics), 301 Statistics of. file repository
2007 by 700 participants .. (SVN), project documents
participants
. 3788(657 .. .
June 2000~May | 32,264(7,504 topics) . Statistics of file repository
WebCalenda 49
evtalendar 5007 by 2,300 participants | P 3% 1 ©vs), project documents
participants

Note) * Project involves many anonymous participants. Thus, the actual number of participants is larger than

the number provided in the table.

ing on Windows-based computers. It secures users’
data with the most advanced security algorithms such
as AES(Advanced Encryption Standard) and Twofish.
Users of ‘KeePass’ can manage personal information
of numerous online accounts with passwords in a sin-
gle secure database. Despite its many users, contrib-
utors, and long history, the project leader keeps the
projects as a single developer project.
‘PHPMyAdmin’(or PMA) is a tool to administer
MySQL with web interfaces. The application was de-
veloped in PHP script language. The features of
‘PHPMyAdmin’ are bound to the MySQL database.
The main usage of ‘PHPMyAdmin’ is found in web
hosting environments by supporting an online access
to database configuration over the network. Because
of the close attachment to MySQL, the progress of
PHPMyAdmin is tightly coupled with updates of the
base application. Major tasks of PHPMyAdmin are

supporting the compatibility of features in accordance
with changes of MySQL and the development of its
own new features. The project is recognized as a
‘community project’ by the MySQL AB.5)
‘WebCalendar’ is a web-based calendar applica-
tion for a single or a group of users in an intranet.
It also functions as a scheduler and an event calendar
viewable for web visitors. It is programmed in PHP
script language. Due to its high quality and useful-
ness, the ‘WebCalendar’ has been embedded in a
number of open source MRBS(Meeting Room Book-
ing System), groupware tools, and numerous personal
and community web sites. The major issues and deci-
sions of the project were open for discussion with
projects participants including users. When issues
such as the decision for the integration of platforms
or the future direction of the project were raised, the

5) http://www.mysgl.com/accessed on July 31, 2008.

242

Information Systems Review, Vol.10, No.2

Wl EX LM Bi2lE 2E2A

JH

2NE

=

2|

project team gathered opindons of each participant and
asked the participants to vote on the possible options.

4.2 Data Analysis and Discussion

<Table 3> summarizes the collected data project
by project. To verify the data, instances observed in
threads of messages were matched up with the data
in other data sources including onling docu-
ments(manuals, FAQ, or wiki) at project websites.

Overall, instances of practices of behavior controls
were observed in the five cases including planning,
documentation, quality assurance, and rule construc-
tion, which were specified as potential measures in
the data template. Detailed practices vary project by
project. This is quite contrary to the assumption of
some researchers who have argued that behavioral

control is infeasible in open source project manage-

ment as it potentially hinders participants’ autonomy
on which an innovation process relies(Xu et al., 2005;
Nidumolu and Subramani 2003).

One distinctive finding is that FreeNAS showed
relatively fewer instances of practices of behavior
control. Given that control practices shown in <Table
3> actually have been gradually implemented over
time, the difference seems to be attributable to
FreeNAS’s relatively short project history; the control
strategy of FreeNAS appears to be still under develo-
pment.

In terms of project planning, project teams were
observed to create two types of plans: project road-
map(or future plan) and To-Do list. Project roadmaps,
which were generally observable in the selected cas-
es, presented abstract levels of future plans. Project
plans, which focused on features and tasks, integrate
individual developers® task determination in an auton-

(Table 3) Observed Instances of Control Practices

Planning:

project No formal project Future plan

Project plan(project | To-Do List roadmap, To-Do list roadmap, To-Do p ’
; . To-Do list
roadmap) To-Do list list
Change log
Documentation: Iédgnualsl ghange k;g g’?ﬂQ hel Wiki Manuals
(manuals, FAQs, nange fog ug Tepo e 1P| pAQ wiki
. wiki Guide for (no user s
and wiki) FAQs, bug list devel Hicipation) Manual(developers’ | FAQ
» U8 evelopers paricipation documentation)

Quality assurance

RC(Releasing
Candidate) testing

RC testing RC testing RC testing

Rule construction: coding convention, Industry Industry
Standards{code translation standard(W3C), standard(IE
convention, industry | procedure, translation Internal policy, TF RFC
standard) or recommended procedure Coding convention, | 2445),
Specific working tools, expression Translation Translation
procedures notations procedure procedure
2008. 8, 243

=

7|

A

omous manner. The existence of such autonomy,
however, did not seem to hinder the functionality of
planning in open source project management, and is
different from traditional ISD management, which is
top down rather than bottom-up. The observed com-
ments of an administrator of WebCalendar supported
this observation. He explained the relationship be-
tween software quality and autonomy by saying that
unlike commercial software projects in which tasks
are delegated top-down, developers in open source
ISD projects choose what they want to work on,
which has positive effects on development. He also
noted that as developers determine tasks based on
personal interests(or passions), they are likely to go
an extra mile to make that component better, which
is less likely to happen in traditional commercial
settings.

To-Do lists were generally observed in file re-
positories or released packages, describing detailed
tasks at the present stage(or version). They combined
tasks determined by an individual developer. To-Do
lists with file repositories were observed to function
as a source to deliver information about the status
of software under development. One frequently wit-
nessed issue in communication threads was devel-
opers’ concerns about limits of resources. Because
providing a response to every inquiry and service re-
quest was practically infeasible, developers tried to
structure repeating practices as shown in the inquiries
of ‘how to become a listed developer’ and ‘how to
contribute.” This provides inquirers with better access
to corresponding information or to be asked to read
manuals or wikis instead of receiving direct guidel-
ines. For instance, feature requests, one of the critical
inquiries of open source ISD projects, were observed
to be often rejected in an early stage of projects, rais-
ing complaints about administrators’ methods of proj-

ect management. To address such issues, open source

project teams allowed participants to access file re-
positories(CVS and SVN) and lists of tasks(To-Do
lists), which enabled them to acquire an up-to date
snapshot of the project information and to decide
whether their feature requests were appropriate and
not-overlapping.

Documentation was another important issue in the
observations of the cases. Change log, manuals, FAQs,
wiki, and web pages were common forms of docu-
ments observed in various sources such as communi-
cation threads, project site, and file repositories. The
observed cases involved many non-developer partic-
ipants who were not necessarily to be listed as a
member. Documentation was observed to be a major
area where these non-developers could contribute fol-
lowed in degree by localization(translation) and user
support. Documentation was dealt with by developers
in the very early stages of the projects, and evolved
into collaboration tools(i.e., wiki) between developers
and participants. Documentation seems to aim at re-
ducing developers’ workload to respond to requests
of information and services.

Project documents also contain various conven-
tions for third party developers(related to add-ons/
plug-ins architecture). Due to limited resources(devel-
opers), project teams seemed to try to balance be-
tween their capabilities and enrichment of features.
The project teams implemented open architecture us-
ing add-ons and plug-ins to seek for such balance.
With open architecture, developers in the team were
observed to focus only on core features and source
code quality while achieving functional richness
through collaborations with developers who did not
belong to the project teams.

Quality assurance turned out to be another im-
portant instance of behavior control observed in the
data. Observed cases showed a development cycle
composed of two distinctive periods: the long-term

244

Information Systems Review, Vol.10, No.2

a9 EX| LHOIA Hl2tE QEAA ZEHE N7

(Table 4) Procedures for Translation

Procedures(where to get source code, how to post the result, and how to become the
listed member), recommended tools, expression notations, specification of files®

tools?)

Standard, proceduresthow to get source code and how-to), notations, recommended

Procedures(what file to translate, how to submit the processed data, and how to become
the listed member) and mailing list®

Procedures(what file to translate, detailed guidelines, and how to submit the results)®

period for feature development, and the short-term
period for releasing packages. In the long-term fea-
ture development period, developers created new fea-
tures, and fixed the reported bugs of previous versions
with no time constraint. In the short-term releasing
period, however, the observed cases intensively mobi-
lized resources including users. In general, the ob-
served project teams refeased a number of releasing
candidates(RC) and requested users to test these.
During the releasing period, three projects(KeePass,
PHPMyAdmin and WebCalendar) froze development
of new features and emphasized the improvement of
quality of features on hand.

The selected project cases are also observed to pro-
duce guidelines and standardized procedures, to some
degree, from coding conventions to the compliance
with industrial standards(PHPMyAdmin for W3C
standard and PHP, WebCalendar for iCalendar and
IEFT RFC 2445). Communications messages regard-
ing translation and participation into code develop-
ment exemplified the use of structured guidelines and
procedures in the observed cases. Translation(local-
ization) was observed to be the most active project
task following source code development. In most cas-

es, project teams required translators to comply with

6) http://freemind.sourceforge.net/wiki/index.php/
Translation accessed on July 31, 2008.
7} http://keepass.info/translations_devinfo.html

a set of guidelines generally including a way to access
source files, instructions, and to manipulate translated
files. <Table 4> shows procedures and standards for-
malized in the project teams.

Guidelines of procedures sometimes included re-
quests to comply with releasing schedules, how to
cooperate with other translators for specific language,
and how to get information and announcements of
the project. Except KeePass, which was a single de-
veloper project, project teams had procedures to ac-
cept qualified developers as core members. Through
a set of procedures, developers were required to learn
project tasks, and to demonstrate their qualifications
in searching and fixing bugs. A FreeMind developer
put it this way: “The best method is as follows: pub-
lish your development plan in our Open Discussion
forum and discuss with others, provide first patches
to PreeMind from your developers directly to me, get
involved as official developers some time later.”

In terms of functional purposes, instances of be-

havioral control practices can be classified into four

accessed on July 31, 2008.

8) http://www.phpmyadmin.net/documentation/#faq7
_2 accessed on July 31, 2008;
http://sourceforge.net/mailarchive/forum.php?foru
m_name=phpmyadmin-trk-translat accessed on
July 31, 2008.

9) http://www.k5n.us/webcalendar.php?topic=FAQ
#fag_1laccessed on July 31. 2008.

2008. 8.

245

i

EnS

7|

sub sections: information sharing, standardization of
practices, revision of source code architecture, and
supporting systems.

Information sharing includes plans, daily updates
of source code, project documentation, and comm-
unication. It functions to streamline information re-
quests such as repeated requests of user support, sta-
tus of incorporation of contributions(but, information
sharing does not necessarily bring all participants into
decisions on issues). Standardization of practices in-
clude conventions, task guidelines, and statements of
qualification. Following established procedures and
standards, participants seem to rely less on direct con-
trols and commands, which enhance self-control of
participants. Although details vary project by project,
all observed cases showed revisions of source code
architecture such as split language section, add-ons
or plug-ins to comply with the evolution of team
structure(related to roles of members such as trans-
lation) and users’ demands for functional diversities.

In addition, the cases utilize various supporting
systems. When interactions were limited, developers
maintained direct contact with user participants for
problem reports(i.e., bugs), user support, etc. As inter-
actions increased, developers relied more on support-
ing systems and requested user participants to utilize
supporting systems. Besides system components pro-
vided by the hosting service(Sourceforge.net), the ob-
served cases adopted various systems such as a wiki
and a file repository system(Subversion: SVN).

Various instances related to behavior control ob-
served in this study are structured forms of repeating
practices to handle overload due to the openness of
the resources of the source code and developing
activities. The observed cases have experienced in-
creasing overload due to increased interactions over
time such as requests of enrichment features, use sup-

ports, task guidelines, etc., which does not seem to
be easily handled with the limited capabilities of the

various projects.

V. Conclusion and Future
Research

The main research question of this study is whether
open source software development projects construct
behavior control strategies. Through observations of
longitudinal data, this research found evidence to sup-
port a positive answer. Project teams were observed
to exercise various managerial practices related to be-
havior control as an attempt to handle overload due
to the openness of the resources. This finding is
against suggestions(Lane et al., 2005; Xu ez al., 2005)
that formal control, especially behavior control, is not
feasible in open source projects due to potential inter-
ference between authority of participants and
pre-specified guidelines.

Various practices related to behavior controls ob-
served in this research can present possible options
to open source project practitioners who experience
corresponding issues or problems such as how to han-
dle overloads. Given that there are successes and fail-
ures in open source projects, deeper investigations on
behavior control practices in those projects have to
be followed in further researches to provide more sys-
tematic guidelines for better management of open
source ISD projects. In this regard, the research scope
also has to be expanded to other types of controls,
including outcome control and self-control.

It also has to be noted that this study has some
limitations. First, this is a case study of which find-
ings need further verification through more studies
for general use. Second, the scope of this research
is limited to only one aspect of control. Thus, it can-

246

Information Systems Review, Vol.10, No.2

#o| EX oM digtE 2ELAL ZTZHE H2

not be ruled out that there are possible alternative
explanations about instances of behavior control prac-
tice observed in this study. Third, the data template
to capture operational measures was developed based
on studies about control in traditional ISD projects.
Although this research conducted a pilot study to ad-
just the template to open source ISD context, there
can still have misinterpretation of meanings of terms
and underlying contextual interrelationships among
measures.

References

AlMarzouq, M., L., Zheng, G., Rong, and V., Grover,
“Open Source: Concepts, Benefits, and Challe-
nges”, Communications of AIS, Vol.16, 2005,
pp. 756-784.

Bollinger, T., R., Nelson, K., Self, and S., Turnbull,
“Open source methods: peering through the clut-
ter”, IEEE Software, Vol.16, No.4, 1999, pp. 8
-1L

Charette, R. N. “Why Software Fails”, in: Spectrum
(IEEE), 2005, pp. 42-49.

Choudhury, V., and R., Sabherwal, “Portfolios of
Control in Outsourced Software Development
Projects”, Information Systems Research, Vol.
14, No.3, 2003, pp. 291-314.

Crowston, K., H., Annabi, J., Howison, and C.,
Masano, “Towards a portfolio of FLOSS project
success measures.” In ICSE Open Source Wor-
kshop, 2004.

Crowston, K., K., Wei, Q., Li, and I., Howison, “Core
and periphery in Free/Libre and Open Source
software team communications”, 39th Hawaii
International Conference on System Sciences,
Hawaii, 2006.

Curtis, B., H., Krasner, and N., Iscoe, “A field study

of the software design process for large sys-

tems”, Communications of ACM, Vol.12, No.3,
1988, pp. 346-371.

Davenport, T. H., and L., Prusak, Working Kno-
wledge Harvard Business School Press, Boston,
Massachusetts, 1998.

Eisenbardt, K. M., “Control: Organizational and Eco-
nomic Approaches”, Management Science,
Vol.31, No.2, 1985, pp. 134-149.

Elam, I.], and D. B., Walz, “A Study of Conflict
in Group Design Activities: Implications for
Computer Supported Cooperative Work Env-
ironments”, 21st Annual Hawaii International
Conference on System Sciences, 1988.

Fang, Y., and D. J., Neufeld, “Should I stay or should
1 go? Worker commitment to virtual organ-
izations”, Hawaii International Conference on
System Sciences, TEEE, Hawaii, USA, 2006.

Feller, 1., and B., Fitzgerald, “A Framework analysis
of the open source software development para-
digm”, ICIS, Brisbane, Queensland, Australia,
2000, pp. 58-65.

Gallivan, M. J., “Striking a balance between trust and
control in a virtual organization: a content analy-
sis of open source software case studies”, Infor-
mation Systems Journal, Vol.11, 2001, pp. 277-
304.

Guinan, P. J. Patterns of excellence for IS pro-
fessionals: an analysis of communication behav-
ior ICIT Press, Washington, D. C., 1988, pp.
ix, 173p.

Henderson, J. C., and S., Lee, “Managing I/S Design
Teams: A Control Theories Perspective”, Mana-
gement Science, Vol.38, No.6, 1992, pp. 757-777.

Hippel, E. v,, and G. v., Krogh, “Open Source So-
ftware and the “Private-Collective” Innovation
Model: Issues for Organization Science”, Orga-
nization Science, Vol.14, No.2, 2003, pp. 209-
223.

2008. 8. -

247

=

7|

H

lannacci, F.,, “Coordination Processes in Open Source
Software Development: The Linux Case Study”,
2005.

Jarvenpaa, S. L., and D. E., Leidner, “Communication
and Trust in Global Virtual Teams”, Organiza-
tion Science, Vol.10, No.6, 1999, pp. 791-815.

Jensen, C., and W., Scacchi, “Collaboration, Leader-
ship, Control, and Conflict Negotiation and the
Netbeans.org Open Source Software Develop-
ment Community”, 38th Hawaii International
Conference on System Sciences, TEEE, Hawaii,
2005.

Kirsch, L. J., “Portfolios of Control Modes and IS
Project Management”, Information Systems
Research, Vol.8, No.3, September 1997, pp.
215-239.

Kirsch, L. J., “Deploying Common Systems Globally:
The Dynamics of Control”, Information Systems
Research, Vol.15, No.4, 2004, pp. 374-395.

Lakhani, K.R., and Hippel, E.v. “How open source
software works:“free” user-to-user assistance”,
Research Policy, Vol.1451, 2002, pp. 1-21.

Lane, M., and P., Basnet, “Informal Control in Open
Source Projects: An Empirical Assessment”,
16th Australian Conference on Information Sy-
stems, Sydney, 2005.

Lattemann, C., and S., Stieglitz, “Framework for
Govemance in Open Source Communities”, 38th
Hawaii International Conference on System
Sciences, Hawaii, 2005.

Manz, C. C, K. W. Mossholder, and F. Luthans, “An
Integrated Perspective of Self-Control in Organ-
izations,” Administration and Society, Vol.19,
No.1, 1987, pp. 3-24.

Markus, M. L., B,, Manville, and E, A., Carole “What
Makes a Virtual Organizational Work?”, MIT
Sloan Management Review, Vol.42, No.1, 2000,
pp. 13-26.

McConnell, S., “Open Source Methodology: Ready
for Prime Time?”, IEEE Software, Vol.16. No4,
1999, pp. 6-8.

Miles, M. B, and A. M., Huberman, An Expanded
Sourcebook: Qualitative Data Analysis SAGE
Publications, Thousand Oaks, London, New
Delhi, 1994,

Nidymoly, S. R. and M. R., Subramani, “The matrix
of control: Combining process and structure ap-
proaches to managing software development”,
Journal of Management Information Systems,
Winter 2003.

Ouchi, W. G., “A Conceptual Framework for the
Design of Organizational Control Mechanisms”,
Management Science, Vol.25, No.9, 1979, pp.
833-848.

Ouchi, W. G., “Markets, Bureaucracies, and Clans”,
Admin. Science Quarterly, Vol.25, No.1, 1980,
pp. 129-141.

Paulson, J. W., Succi, G., and Eberlein, A. “An em-
pirical study of open-source and closed-source
software products”, IEEE Transactions on So-
fiware Engineering, Vol.30, No.4, APR 2004,
pp. 246-256.

Pearlson, K. E. and C. S., Saunders, Managing and
Using Information Systems: A Strategic App-
roach, (2nd ed.) John Wiley and Sons, New
York, NY, 2004,

Piccoli, G., A., Powell, and B., Ives, “Virtual team:
team control structure, work processes, and team
effectiveness”, Information Technology and
People, Vol.17, No.4, 2004, pp. 359-379.

Robey, D. and D., Farrow, “User Involvement in
Information-System Development a Conflict
Model and Empirical-Test”, Management Sci-
ence, Vol.28, No.1, 1982, pp. 73-85.

Raymond, E. S., The Cathedral and The Bazaar
O’Reilly and Associates, Inc., Sebastopol, CA,

248

Information Systems Review, Vol.10, No.2

e EX UHolM HiZlE 2EAA ZRHE 22|

USA, 1999.

Townsend, A. M., S. M,, DeMarie, and A. R., Hen-
drickson, “Virtual teams: Technology and the
workplace of the future”, IEEE Engineering
Management Review, Vol.28, No.2, 2000, pp.
69-80.

Xu, B, Y., Xu, and Z., Lin, “Control in Open Source

Software Development”, 11th American Confer-
ence on Information Systems, Omaha, 2005.
Yin, R. K., Applications of Case Study Research,
Thousand Oaks, London, New Dehli, 1993,
Yin, R. K., Case Study Research, Design and Me-
thods, (3rd ed.) SAGE, Thousand Oaks, London,
New Dehli, 2003.

2008. 8.

249

x=

7|

M

Information Systems Review

Volume 10 Number 2
August 2008

Open Source Project Management-from a
Behavior Control Perspective

Jun Gee Cho"

Abstract

With the successful arrival of quality freefopen source software, open source ISD(Information System
Development) projects have been drawing attention from academic researchers. However, there have
been few efforts to examine the managerial aspect of open source ISD projects. This study use a case
research methodology to explores the management of open source projects, especially from the perspective
of behavior control. Through data analysis and discussion, the study found that various practices related
to behavior control were exercised to obtain participants’ shared goals, although specific instances vary
in each case. This finding is contradictory to the views of some researchers who suggested open source
ISD projects lack behavior control. For more comprehensive understanding, however, future research

should also includecontrols of open source projects in terms of outcome control and self-control.

Keywords: Open Source, Control, Behavior Control, Project Management, Case Study

* Claremont Graduate University, Claremont, California, USA

250 Information Systems Review, Vol.10, No.2

o EX DEOIA viglE ELA ZEHE)

OMA 2O

X £ 7} (jun.cho@cgu.edu or jun.cho@gmail.com)
AR FHANE FE&F

5 &3 SIS dEWS L e MBA/
MS in eBusiness (4 F844h vla 2ol EWS tigh4 Information

Systems and Technology(4F, 2008\ 8¥ Z¢i<]4)

eaTA

=28+ 120084 068 19¢ Axjgtda 200849 088 02
1A +HY 1 2008H 078 27¢

2008. 8.

251

