g QEHO0|A J|el 25 K& MHA AS &Y ik

=i 2008-45TC-8-12
o FHIFE ol&3 MEH
Au] 2 A

(Method of Fare Payment based on Open API using Mobile Phone)

o)
=]

S

=3 * %) Hk
d @ ol A&7, 4 A

(Sunhwan Lim, Jaeyong Lee, and Byungchul Kim)

[=} oF
pad =

=dMe 8F AE MUAE 3 715 FRE AASIGH ol IT MdAE] §4% X

44 T F J=EFE Fa TEAE] B UYL AFY 4 YEE ¢ vARYS
E dyso]2g Ax #el deHol Ay Aoy Yoyl A Fag I8E dth o
20 Az Bel Au2Z FAEE 87 A8 MuaE Ao 42 MujaE Parlay X
Gt A€ 248y Az #e 298 340N, Parlay X A8 YA 24 Spit Charglng &+ Al 9_3161101"3%
93, Parlay X AlF 8] Y4920 A Notification & A7 2 g o] A& A3t

439 92 29
AQa7] gaA
1%6}@1 A% A

Abstract

In this paper, functional architecture for fare payment is designed that enables IT developers to create charge-related
applications using telecommunications network elements. To support a business model that enables operators to offer
integrated billing, a payment and an account management API is crucial. Using this model, a fare payment service
-consisting of a payment service and an account management service was created. Each service is based on the
architecture of Parlay X web services™. For the modeling of payment and of account management, the new operation of

“split charging” is required in Parlay X payment web services, as is the new operation “notification”.

Keywords : Parlay X, Open API, Payment, Account Management

with seamless broadband nultimedia services

between wire and wireless networks using the same

I. Introduction

Telecommunications networks continually evolve in
terms of their form of integrated or converged
architecture, the of
integration between the wire and the wireless

From viewpoint service,
services is also a cwrent issue. This type of

integration would imply that the end user is provided

TR, FFARFAATY
(ETRD

T ALY FddEdn AREANFEHE
(Chungnam National University)

Hedak 2008d4929d, FALE A 200898€12Y

(659)

terminal. The current telecommunications service
The

between wire and wireless services provides the

market 1s saturated, however. integration

opportunity for a new of level services with
subscribers using the broadband capability of wired
service coupled with the mobility of wireless. The
integration between wire and wireless services
includes a number of concrete examples that have
been developed. Open API (Application Programming

Interface) can be easily used to implement or provide

2008 89l HxIZS3 =RA A 45 W TCHAH 8 =

integration between wire and wireless services.

The Parlay Group defines an API based on
CORBA (Parlay/OSA API) and an API based on web
services (Parlay X web services) that enables
third-party applications to make use of network
functionalities™ ™ 7. Open APl is a set of open,
standardized interfaces between an application and a
telecommunications network. This technology can
provide a range of services for the integration of
wire and wireless systems

independently from

network infrastructures, operating systems, or
developing languages. The interaction between an
application incorporating Parlay X web services and a
server implementing Parlay X web services is done
with an XML-based message exchangew. Parlay X
web services follow simple application semantics that
allow the developer to focus on access to telecom
capabilities using common web-services programming
techrﬂques@

In this paper, functional architecture for fare
payment is designed that enables IT developers to
create charge-related applications using tele-
communications network elements. The designed fare
payment architecture is based on the architecture of
Parlavy X web services. It was implemented and
tested on an IBM RAD (Rational Application
Developer). To model the functional architecture, new
operations are proposed, and scenario flows are
llustrated for them.

This paper is organized as follows: Section 2
briefly describes open APL Section HI outlines the
definition of the payment SCF (Service Capability
Feature) and the account management SCF. Section
IV describes the designed fare payment architecture.
Section V details the implementation of the prototype

function and Section VI is the conclusion.

II. Open API

The Parlay Group is a consortium formed to
develop open, that
enable the development of applications capable of

technology-independent APls

operating across converged networks. In this section,

(660

83

the Parlay/OSA (Open Service Access) APl and
Parlay X API are briefly described. A more detailed
description of the Parlay APl is available in the

literaturet >+ 7

1. Parlay/OSA API

Parlay/OSA APls are designed to enable creation
of both telephony applications and “telecom-enabled”
IT applications“‘ 41T developers, who develop and
deploy applications outside the traditional tele-
communications network space and business model,
are viewed as crucial for creating dramatic
whole-market growth in next generation applications,
services, and networks. An overview of the logical
entities involved n Parlay/OSA is illustrated in Fig.
1. The main functions of each element are described

below.

- Application: To use network capabilities with APIs.

- Application Server (AS): To contain applications;
this is the client side of an APL

~ Framework: To relate applications and SCSs And
to manage SCFs.

- Service Capability Feature (SCF): Capabilities (i.e.
APIs) such as Call Control or User Interaction.

~ Service Capability Server (SCS). To contain SCFs;
this is the server side of an APL

- Gateway: Physical entity to contain the framework
and SCS.

erver

}C) CD [D (ﬂ:;\ (;C)TF:A;;IECMOHV

Parlaw 08 A Bferface

L ‘ T ORER| R ST AN inT Eed !Aj;acec’a”
«k Framework Call Control User interaction Service Capability Server J
i HILR f MSC :5 8SP @ﬁj
E— wg) (e.e. Billing Setver efc)
2 1. Parlay/CSA =28 A TME
Fig. 1. Overview of the logical entities involved in
Parlay/OSA.
2. Parlay X API
Parlay X Web Services are intended to stimulate
the development of next-generation network

84 O|ZTEE 0188 MYUd Ay 0|~ ZiHel 28 Xg MH L HE 2y

Parlay X
Applications
__________ Parlay X APIS

Parlay

PP

I Parlay X Web Services U

Increasing

Abstraction] PHRY/OSA APIs Qm,,ﬂ..,,w‘t

‘ Parlay Gutewsy ﬁ

,,,,,,,,,,,,,,,, . Network Protocels
(e.g. SIP, INAP efc)

HNefwork Elements

I3 2. Paray X2 Parlay/OSA APl ZHAIE
Fig. 2. Relationship between Parlay X and Parlay/OSA
- APls.

applications by developers in the IT community who
are not necessarily experts in telephony or
telecommunications”. The selection of Web Services
should be driven by commercial utility and not
necessarily by technical elegance. The goal is to
define a set of powerful yet simple, highly abstracted,
imaginative, telecommunications capabilities that
developers in the IT community can both quickly
comprehend and use to generate new, Innovative
applications.

Each Parlay X Web Service should be abstracted
from the set of telecommunications capabilities
exposed by the Parlay/OSA APIs, but may also
expose related capabilities that are not currently
supported in the Parlay/OSA APIs where there are
compelling reasons”. These tiered levels of
abstraction and the Parlay/OSA - Paday X

relationship are illustrated in Fig. 2.
II. Payment and Account Management SCF

1. Payment SCF

Parlay X web services allow the third-party
applications to support payments of any content in an
open, web-like environment through the payment
APL Interfaces for payment functionalities (including
sixteen operations) are termed AmountCharging,

VolumeCharging, ReserveAmountCharging, and

[1]

ReserveVolumeCharging'™. The charge for contents is

tlustrated in Fig. 3.

ne
>

g 2

Seff Service endSms AmountCharging
FE’“’ User Portal Web Service Web Service

log on to content portal
order ringtone

send ringtone to device

Message ientifier

create charge for conteng (chargeAmount() |
display status page

a3 3 HHx XE AR B
Fig. 3. Charge for content.

2. Account Management SCF
Parlay X web allow third-party
applications to manage an account through an account

services

management APL. The account management interface
can display account balances or obtain the transaction
history of an account and can recharge an account as
well. The

functionalities (including twelve operations) is termed
(2]

interface for account management

AccountManagement and so on”. A prepaid account

recharge is illustrated in Fig. 4.

.] elf Service] e aam‘tMan&gemeﬂ
End User Portal | Web Sarvice
log on to portal
request balance »
get belance (getBalance
\palance |
| isplay account status |

update balance (balancelUpdate())

| display account status

request credit expiry date
get credit expiry date (get{ reditExpiryDate())
\expirydate]

display expiry dafe

log off

a% 4 AF S AR SES
Fig. 4. Prepaid account recharge.

IV. Designed Fare Payment Architecture

1. Detailed Payment Functional Architecture

Detailed functional blocks of the payment SCF are
illustrated in Fig. 5. This architecture consists of the
main block, manager block, and protocol adaptor

2008 8% MXAEHE =X M 45 A TCH A 8 &

PAY SCF Module

Instance Creation

|
H H
N
: ‘

PAY Manager I Instance Creation

Pt o=
Interface Implementation |

$ aethod culi

Main

RMIServer

‘ Protocol Adaptor

} """""""""""""""""""""""" PAY: Payment
Payment 7| #+xX&
Functional architecture of the payment SCF.

=Y
Fig. 5.
block. The main functions of each
described below.

element are

- The main block is the main thread of the SCF.
This block creates the RMI server that processes
RMI requests and registers the RMI server with
the RMI registry. This block also creates what is
known as a manager instance and a protocol

If the created RMI server is

invoked from web service module, this server finds

adaptor instance.

the manager instance.
- The manager block implements the payment
This block related

operations in order to perform functionalities and

interface class.

invokes
then records the transaction history information
into a database in a gateway. Related operations
(sixteen) include the chargeAmount, refundAmount,
getAmount, chargeVolume, refundVolume, reserve
Amount, reserveAdditional Amount, reserveVolume,
reserveAddtional Volume, chargeReservation,
releaseReservation and so on. This block interacts
with protocol adaptor using method call.
- The protocol adaptor block receives a request from
the manager and forwards the request to a
charging server. The results from the charging

server are forwarded to the manager.

In parlay x payment web services, the addition of
a split charging operation with refund and reservation

1s proposed in order to enhance the usefulness of the

85

applications. If a user cannct make payments from

one reservation (for example if the reservation

balance is low) and the sum of multiple reservations
of one or several users makes it possible to meet the
payment, then this split charging method becomes
useful. Split charging creates the ability to make
payments from multiple reservations simultaneously.
In addition, it can enhance the quality of applications.

Interface AmountCharging {

//Basic Operations
refundSplitAmount(splitInfol], charge,
referenceCode);

)

Interface VolumeCharging {

//Basic Operations
refundSplitVolume(splitInfol], volume, billingText,
referenceCode, parameters(]);

’

Interface ReserveAmount Charging {

//Basic Operations
reserveSplitAmount(splitinfol], charge);
reserveAdditionalSplitAmount(splitinfol |, charge)
chargeSplitReservation{splitInfol], charge,
referenceCode)

}’.

Interface ReserveVolumeCharging {

//Basic Operations
reserveSplitVolume(splitInfol], volume,
billingText, parametersl]);
reserveAdditionalSplitVolume(splitinfol], volume,
billingText).
chargeSplitReservation(splitInfol 1, volume,
billingText, referenceCode)

e

86

elf Service
Pog

£nd User 1 [

‘Chargmg Serv;r]
I

1. order content

3. charge to muftiple reservatiors,

|

8 6 g g Y HAX EBR
Fig. 6. Flow of charges with split charging.

The flow of a scenario with split charging is
dlustrated in Fig. 6. Some entities are omitted in this
figure to simplify the diagram.

- Assuming that subscribers are interested in
receiving the stream of a soccer match and sharing
the bill, the subscribers decide to stream the match,
The match starts and the provider periodically
invokes a chargeSplitReservation operation through
the reserve amount charging APL The reserve
amount charging web service then charges multiple

reservations (chargeSplit Reservation()).

2. Detailed Account Management Functional
Architecture

Detailed of the

management SCF are illustrated in Fig. 7. This

functional blocks account
architecture consists of the main block, manager
block, and protocol adaptor block. The main functions
of each element are described below.

vvvvv ¥ Wb Servcie Call
z.ano i tnstence Creation
=oeew R Calt

- hetod Col
ACCMNA: Account Menagement

ACCNM: Account Menagement Noffication Manager
ACCN: Account Management Notification

Account Management 715 &%
Functional architecture of the
management SCF.

account

O|ZTatE OI8TH WYY QIEH |2 JjHtel 28 X|g MBl2 HF

i YN 2l

- The main block is the main thread of the SCF.
This block creates the RMI server that processes
RMI requests and registers the RMI server with
the RMI registry. This block also creates what is
known as a manager instance and a protocol
adaptor instance. If the created RMI server is
invoked from web service module, this server finds
the manager instance.

- The manager block implements the account
management interface class. This block invokes
related
functionalities and then records the transaction

operations i order to perform
history information into a database in a gateway.
Related operations (twelve) include getBalance,
getCreditExpiryDate, balanceUpdate,

voucherUpdate, getBalanceTypes and so on. This

getHistory,

block interacts with protocol adaptor using method
call.

- The protocol adaptor block receives a request from
the manager and forwards the request to a
charging server. The results from the charging
server are forwarded to the manager.

In parlay x account management web services, the
addition of a notification operation with Account-
ManagementNotificationManager and AccountNotifi-
cation is proposed in order to enhance the usefulness
of applications. The notification operation 1s capable
of providing information about an account that has
been changed by some applications (e.g. Multimedia
Service or WAP/WEB pages) to other applications
{eg. by SMS or MMS) after account date_low
In addition,
applications by allowing subscribers to confirm

notices. it can enhance quality of
mformation about account_date_low notifications in
real time.

E- S

Table 1.

Az Wz oMe 7 2=

AccountChangedEvent Enumeration.

Enumeration Value | Description

... //Basic Values

.. ~“Basic Descriptions

Account credit expiry date
18 below the threshold

AccountDateLow

200844 88 TXNZEH =AM 45 I TCHEHAS = 87

Interface AccountManagementNotificationManager

//Basic Operations
changeNotifeation(correlator, criteria);
getNotification(correlator)

5

Interface AccountNotification {

//Basic Operations
accountDateLow(correlator, balanceExpireDetails);
accountError{correlator, endUserldentifier,

reason);

k

The flow of a scenario with the notification
operation is illustrated in Fig. 8 Some entities are

omitted in this figure to simplify the diagram.

- In Fig. & notifications of account changes are
made available to the SMS provider (application A)
(startNotification()).

- Assumed here is that a subscriber is interested
in receiving a stream of a soccer match (application
B). The subscriber decides to stream the match to
his MS (Mobile Station). The match starts and the
provider periodically charges the account. When a

Self Service Portal - ar Sorvael et L
oy Charging Serwge End User
*n = e S il . -
a 5 T SendSms
b Senice SMS Centey
countanagement
N Wb Servic
b st bt anan:
2_chargdAmountly deration
Kevaticn
3. tharge w[the accaunt
N 3-1 when a monitored accolnt changes (dharge)
4 aeroubtChased])
5. sendSins{:
il ISR H
A sendSms | :
T 7 sendsmg
5, angounipetet g S
Pk
10 sendpmsi I
11 sersiSms ,
13 belengeLipdatel) 12, sendSmg
: +4 techdrge 1o the adcount
|
I H 14-1 when g moniered accpunt changes [recharge)
15 afcolntRechatyedt)
16 zendpms{)
1% senddmg
18. send&ms|
e

app & application A (e.g SMSMMS ete)
ap B: apphea Dosealo ading a niag
250 C apphcshon (c g WADAVEB pages o

. EX HH HAX] BEL
Fig. 8 Flow of accountDateLow with the netification
operation.

monitored account is charged, a notification is
delivered to the SMS provider with the new account

information in real time.

- The SMS provider sends the subscriber an SMS
message confirming the correctness of the
payment.

~ When a monitored account date is below a date
threshold, a notification i1s delivered to the SMS
provider with the new account information in real
time (accountDateLow()).

- The SMS provider sends the subscriber an SMS
message confirming an account_date_low.

- Assuming that the prepaid subscriber interacts
with a web page to recharge (application C), the
provider then recharges the account.

- When a monitored account is recharged, a
notification is delivered to the SMS provider with
the new account information in real time.

- The SMS provider sends the subscriber an SMS

message confirming the correctness of the

recharges.
- The SMS provider sends a notification
(endNotification{}).

3. Functional Blocks for Fare Payment

Functional blocks of open service application server
and gateway for fare payment using open APl are
iustrated in Fig. 9 and network architecture is
illustrated in Fig. 10. From here, we can know that
open service application server provides service user
with payment Ul (User Interface). And it also stores

Apgiization Serves

| Pagment Logie| -

I8 9. 28 XE MHlA Vi BEL
Fig. 9. Function blocks for fare payment.

88 O|SH3IE Ol 28 WY EHHO|A Jlgtel 23 XE AMH[A HE 8y

S rosi Application

 intemet Server
ooy
‘ \

i

i

1

[S
i

[

——

oy

Charging
Server

SMS Cenger

I3 10. 22 X& My~ & FxE
Fig. 10. Network architecture for fare payment.

the customer data for service user subscription
management., If service user requests the fare
payment, payment logic in open service application
server requests the act for payment of open service
gateway using payment APL Open service gateway
payment functionality performs the reqguest from
payment logic. And then the result is applicable to
charging server. The charging server stores payment
transaction data and log.

Open service application server provides service
user with payment transaction history refrieving
functionality. From here, we can know that open
service application server provides service user with
payment transaction history retrieving UL And it also
stores the customer data for service user subscription
management. If service user requests the payment
transaction history, account management logic in
open service application server requests the act for
payment transaction history of open service gateway
using account management APL Open service
gateway account management functionality performs
the request from account management logic. And
then the result forwards the payment transaction
history in charging server to account management
logic in open service application server. Payment
transaction history forwarded to account management
logic in open service application server is provided
with service user through account management UL

4. Payment Scenario Flow for Fare Payment

Payment scenario flow for fare payment service is
illustrated in Fig. 11. If fare payment is requested
from service user in init state, it receives service

user mobile phone number and also receives

M g

Init

Payment
Request

y
Phone No,
Input

X
Payment Auth.
& Passwd Input

Payment Request
to W

Passwd Errot Unregistered Account
v h 4
Passwd Esror Payment Result Unregistered Account
SMS Transfar SMS Transfer SMS Transfer

L |

b4
Tdle

a8 11 28 XE MulA X8 8BE
Fig. 11. Flow of payment for fare payment.

password and payment authority. Using input data, it
forwards payment request to open service gateway in
telecommunication network. If the result is YES, it
sends the result using SMS to mobile phone If
service user’s password is wrong, it sends password
error message using SMS to mobile phone. If the
account is unregistered, it sends unregistered account

message using SMS to mobile phone,

5. Account Management Scenario Flow for
Fare Payment

Account Management scenario flow for fare
payment service is illustrated in Fig. 12. If fare
payment transaction history is requested from service
user in init state, it receives service user account
number and also receive password. Using input data,
it forwards payment transaction history request to
open service gateway in telecommunication network.
If the resut is YES, it displays the payment
transaction history. If service user’s password is

2008 8 MXISEE =FA M 45 H TCH A 8 =

It

A 4
Transaction Histoty
Request

¥
Agcourg No.
Input

Y

Passwd lnpwt

Transaction History
Request to W

Pasgwd Error Unregistered Account
v
Passwd Etror Transaction History Unregistered Account
Display Display Display

hd

Tdle

O8 12 2F X2 Mela Az 2 58
Fig. 12. Flow of account management for fare payment.

wrong, it displays password error message. If the
account is unregistered, it displays unregistered

account message.

V. Implementation of the prototype function

1. Environment and Testing

The designed fare payment was implemented and
tested on an IBM RAD (Rational Application
Developer) using the Java language. The created
payment and account management web service
modules were loaded on an IBM WAS (WebSphere
Application Server, H/W : Sun Server, O/S : Solaris).
Payment and account management web services
consisted of a web service module and a SCF
module. The web service module interacts with the
SCF module using RMI, which implies that a security
policy between these modules is needed. However, a

security policy is in fact unnecessary, as the two

(666)

89

modules are parts of the same system. Payment and
account management web services interact with an
Altibase DB to record transaction history information
using JDBC (Java Database Connectivity) and with
the charging server for the charging or billing
information.

In this test, a fare payment service was used that
payment
management Service.

consisted of a service, an account
The created services were
implemented and tested on Microsoft Visual Studio

2005 using the C# language.

VI. Conclusion

The
saturated. Regarding new market growth, a range of

current telecommunications market is
new intelligent services is on the horizon. Potential
subscribers must be introduced to these services, but
it is cuwrrently not feasible to bring third-party
service providers and developers into the vertical
architecture of current telecommurications networks.
Thus, open, technology—independent APIs that enable
the development of applications that operate across
converged networks are necessary.

In this paper, functional architecture for fare
payment is designed that enables IT developers to
create charge-related applications with telecommuni-
cations network elements. The designed fare payment
architecture is based on the architecture of Parlay X
web services. It was implemented and tested on an
IBM RAD. For the modeling of the functional
architecture, new operations were proposed and
scenario flows were illustrated for them. The
validation of the designed fare payment model was
processed. Specifications regarding the detailed fare
payment architecture along with the addition of new
operations in Parlay X payvment web services and
new operations in Parlay X account management web

services were obtained.

References

[1] ETSI ES 202 504-6 v0.0.4: Open Service Access

90 O|ZTEHE O|8E MY

(OSA); Parlay X Web Services; Part 6 Payment

(Parlay X 3) (2007-06)
(2]

Management (Parlay X 3) (2007-06)
(3]

Messaging (Parlay X 3) (2007-06)
[4]

(Parlay 6) (2007-03)
{5

White Paper v1.0 (2002)
[6]

Services WSDL Style Guide (2002)
[7]
Specification v1.0 (2003)
Ard-Jan Moerdiik and Lucas
Ericsson Eurolab Netherlands: “Opening
Networks with Parlay/OSA: Standards
Aspects behind the APIs”, IEEE Network (2003)
WeiWy, Hua Zou, Fangchun Yang,

(8l

(9]

Pattern Language”, Proceedings of ICCT (2003)
[10] Karsten Luttge: “E-Charging APL

Charging to a Payment Service Provider”,

Intelligent Network Workshop (2001)

[11] JW. Hellenthal, F.JM. Panken, M. Wegdam:
through
Prototyping”, IEEE Intelligent Network Workshop

“Validation of the Parlay APl

(2001)
{12] PayCircle, http://www.paycircle.org
[13] OMA MCC, http://www.openmobilealliance.org

ETSI ES 202 504-7 v0.04: Open Service Access
(OSA); Parlay X Web Services; Part 7 Account

ETSI ES 202 504-4 v0.0.3: Open Service Access
(OSA); Parlay X Web Services; Part 7 Short

ETSI ES 204 915 v0.0.1: Open Service Access
(OSA); Application Programming Interface (API)

Parlay X Working Group: Parlay X Web Services
Web Services Working Group: Parlay Web
Parlay X Working Group: Parlay X Web Services
Klostermann,
the

and

“Design
OSA/Parlay Application Frameworks Using a

Outsource
IEEE

(667

SIE{HOIL Jitel RF K& MH2 HE YWY AUME 2

S IRNIE]

(43 9)

~&A FFAAFTA
] 0%71""3?“1“"‘
SN AZEHEAS

¥ czagpor : ol5EAl HEg

% a, 7HQ1§_}A /\iﬂ]_{:>

2 4

1997

of X S(F3d

1988 A gohstn A
E‘LA}

S stsed A7)
AR} A Ah
sl drjed A 2
Mg s} what
1995Lﬂ YA F ARFA 44
HddT
1995 ~ @A Fd
<FPA R}

)

19904

19954

1990 ~

2 HEAAY)

Ageetal A3 8

A}

4 BEHEreq A7) 2
3] 7\}.—3‘61-_‘,}, A—])\].

3 gxaetrled d7 %
x{x}J—alJ,} tﬂ»/\],

1993y ~ 1999Lﬁ Az CDMA dd
1999 ~ A4 Feolsty ARFAFEY Rus
<FEA Hok: o FARY, | FFA VEA,

3
dl o] &1 >

