강비선형해석법에 의한 대형연직원주구조물에 작용하는 쇄파후의 파력 및 파랑변형

Wave Forces Acting on Large Vertical Circular Cylinder and Consequent Wave Transformations by Full-Nonlinear Analysis Method after Wave Breaking

  • 이광호 (나고야대학 사회기반공학) ;
  • 신동훈 (한국석유공사 건설사업본부) ;
  • 김도삼 (한국해양대학교, 건설환경공학부)
  • Lee, Kwang-Ho (Department of Civil Engineering, Nagoya University) ;
  • Shin, Dong-Hoon (Construction Department, Korea National Oil Corporation) ;
  • Kim, Do-Sam (Division of Construction and Environmental Engineering, Korea Maritime University)
  • 발행 : 2008.08.31

초록

본 연구에서는 3차원수치파동수로내에 쇄파후의 파랑이 대형연직원주구조물에 작용할 때 작용파력과 구조물에 의한 파랑변형을 수치적으로 해석한다. 수치해석법으로 파랑과 구조물과의 비선형상호간섭에 따른 쇄파현상을 포함하는 복잡한 자유수면의 거동특성을 고정도로 해석할 수 있는 3차원Navier-Stokes운동방정식과 자유수면추적에 3차원VOF(Volume Of Fluid)법을 결합한 강비선형해석법을 적용한다. 3차원파동장내에서 해저는 쇄파를 상대적으로 쉽게 발생시킬 수 있는 경사스텝의 해저(변수심의 경사수역과 일정수심역으로 구성)로 이루어진 경우를 고려하며, 파고의 변화에 따라 쇄파가 경사수역 또는 일정수심역에서 발생하여 일정수심역의 대형연직원주구조물에는 쇄파후의 파랑만이 작용하는 경우로 한정한다. 구조물의 위치 및 입사파랑의 파고변화가 구조물에 작용하는 파력 및 파랑변형에 미치는 특성을 쇄파전후의 파랑을 중심으로 검토하고, 쇄파후 파랑의 전파에 따른 파랑에너지의 변화와 구조물에 작용하는 파력특성과를 연관시켜 논의하여 3차원파동장에서 파랑과 구조물과의 강비선형간섭현상의 특성을 규명한다.

Simulations of three-dimensional numerical wave tank are performed to investigate wave force acting on a large cylindrical structure and consequent wave deformation, which are induced by bore after breaking waves. The numerical model is based on the three-dimensional Navier-Stokes equations with a finite-difference method combined with a volume of fluid(VOF) method, which is capable of tracking the complex free surface, including wave breaking. In order to promote wave breaking of the incident wave, the approach slope was built seaward of the structure with a constant slope and a large cylindrical structure was installed on a flat bed. The incident waves were broken on the approach slope or flat bed by its wave height. In the present study, all waves acting on the large cylindrical structure were limited to breaking bore after wave breaking. The effects of the position of the structure and the incident wave height on the wave force and wave transformations were mainly investigated with the concern of wave breaking. Further, the relations between the variation of wave energy by wave propagation after wave breaking and wave force acting on the structure were discussed to give the understanding of the full-linear wave-structure interactions in three-dimensional wave fields.

키워드

참고문헌

  1. 김도삼, 허동수, 윤덕영, 정연태(1997). 수치파동수조 중에 놓인 잠제에 의한 쇄파의 수치해석에 관한 연구. 대한토목학회논문집, 17(II-3), 251-259
  2. 김도삼, 허동수, 정연태, 윤덕영(1998). 투과성잠제에 의한 쇄파의 수치해석에 관한 연구. 대한토목학회논문집, 18(II-1), 59-65
  3. 이광호, 이상기, 신동훈, 김도삼(2008). 복수 연직 주상구조 물에 작용하는 비선형파력과 구조물에 의한 비선형파랑 변형의 3차원 해석. 한국해안해양공학회논문집, 20(1), 1-13
  4. 조용준, 이 헌(2007). Lagrangian Dynamic Smagronsky 난류모형과 SPH를 이용한 쇄파역내에서의 비선형 천수거동에 관한 연구. 한국해안해양공학회지, 19(1), 81-96
  5. 허동수, 염경선, 배기성(2006). 혼성방파제에 작용하는 3차원 파압구조에 미치는 위상차의 영향. 대한토목학회논문집, 26(5B), 563-572
  6. Dalrymple, R.A. and Rogers, B.D. (2006). Numerical modeling of water waves with the SPH method. Coastal Engineering, 53(2-3), 141-147 https://doi.org/10.1016/j.coastaleng.2005.10.004
  7. Dold, J.W. and Peregrine, D.H. (1984). Steep unsteady water waves. An efficient computationalscheme, Proc. 19th ICCE, 955-967
  8. Galvin, C.J. (1972). Wave breaking in shallow water. Waves on Beaches and Resulting Sediment Transport. R. E. Myers, Ed., New York, 413-451
  9. Gomez-Gesteira, M., Crespo, A.J.C., de Castro, M. and Dalrymple, R.A. (2006). SPH accuracy to describe the wave impact on a tall structure. 1st SPHeric Workshop, Rome. (http://cfd.me.umist.ac.uk/sph/meetings/1stSPHERIC_workshop/Moncho_SPHERIC_2006.pdf)
  10. Gomez-Gesteira, M. and Dalrymple, R.A. (2004). Using a three-dimensional smoothed particle hydrodynamics method for wave impact on a tall structure. Journal of Waterways, Ports, Coastal and Ocean Engineering, 130(2), 63-69 https://doi.org/10.1061/(ASCE)0733-950X(2004)130:2(63)
  11. Guyenne, P. and Grilli, S.T. (2006). Numerical study of threedimensional overturning waves in shallow water. Journal of Fluid Mechanics, 547, 361-388 https://doi.org/10.1017/S0022112005007317
  12. Harlow, F.H. and Welch, J.E. (1965). Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Physics of Fluids, 8(12), 2182-2189 https://doi.org/10.1063/1.1761178
  13. Hirt, C.W. and Nichols, B.D. (1981). Volume of Fluid(VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39, 201-225 https://doi.org/10.1016/0021-9991(81)90145-5
  14. Hur, D.S., Kim, C.H., Kim, D.S. and Yoon, J.S. (2008). Simulation of the nonlinear dynamic interactions between waves, a submerged breakwater and the seabed. Ocean Engineering, (in press)
  15. Hur, D.S., Mizutani. N. (2003). Numerical estimation of the wave forces acting on a three-dimensional body on submerged breakwater. Coastal Engineering, 47, 329-345 https://doi.org/10.1016/S0378-3839(02)00128-X
  16. Hur, D.S., Mizutani. N., Kim, D.S. (2004). Direct 3-D numerical simulation of wave forces on asymmetric structures. Coastal Engineering, 51, 407-420 https://doi.org/10.1016/j.coastaleng.2004.05.003
  17. Kioka, W. (1983). Numerical analysis of breaking waves in a shallow water. Coastal Engineering in Japan, 26, 11-18
  18. Lee, K.H. (2006). A study on time domasin analysis of nonlinear dynamic interaction among wave, currents and bed materials. Doctoral Thesis, Nagoya University, Japan
  19. Lee, K.H., Mizutani, N., Hur, D.S. and Kamiya, A. (2007). The effect of groundwater on topographic changes in a gravel beach. Ocean Engineering, 34, 605-615 https://doi.org/10.1016/j.oceaneng.2005.10.026
  20. Lemos, C.M. (1992). A simple numerical technique for turbulent flows with free surfaces. International Journal of Numerical Methods in Fluids, 15, 123-146
  21. Lin, P.Z., Liu, P.L.-F. (1998a). A numerical study of breaking waves in the surf zone. Journal of Fluid Mechanics, 359, 239-264 https://doi.org/10.1017/S002211209700846X
  22. Lin, P.Z., Liu, P.L.-F. (1998b). Turbulence transport, vorticity dynamics and solute mixing under plunging breaking waves in surf zone. Journal of Geophysical Research, 103, 15677-15694 https://doi.org/10.1029/98JC01360
  23. Liu, W.K., Jun, S. and Zhang, Y.F. (1995). Reproducing kernel particle method. International Journal of Numerical Methods in Fluids, 20, 1081-1106 https://doi.org/10.1002/fld.1650200824
  24. Liu, Y., Xue, M. and Yue, P.K.P. (2001). Computations of fully nonlinear three-dimensional wave-wave and wave-body interaction, Part 2. Nonlinear waves and forces on a body. Journal of Fluid Mechanics, 438, 41-65
  25. Longuet-Higgins, M.S. and Cokelet, E.D. (1976). The deformation of steep surface waves on water, 1. A Numerical method of computation. Proc. Roy. Soc. London, A350, 1-26
  26. Miyata, H. (1986). Finite-difference simulation of breaking waves. Journal of Computational Physics, 65, 179-214 https://doi.org/10.1016/0021-9991(86)90011-2
  27. Mohaghan, J.J. (1992). Smoothed particle hydrodynamics. Annual Review of Astronomy and Astrorhysics, 30, 543-574 https://doi.org/10.1146/annurev.aa.30.090192.002551
  28. Mohaghan, J.J. (1994). Simulating free surface flows with SPH. Journal of Computational Physics, 110, 399-406 https://doi.org/10.1006/jcph.1994.1034
  29. Petit, H.A.H., van Gent, M.R.A. and van den Boscj, P. (1994). Numerical simulation and validation of plunging breakwaters using 2D Navier-Stokes model. Proc. 24th ICCE, 511-524
  30. Stokes, G..G. (1880). On the theory of oscillatory waves. In Mathematical and Physical Papers, 1, Cambridge University Press, London England, 315-326
  31. U. S. Army Coastal Engineering Research Center (1984). Shore Protection Manual. U. S. Goverment Printing Office, Washinton, DC
  32. Welch, J.E., Harlow, F.H., Shannon, J.P. and Daly, B.J. (1966). The MAC method. A computing technique for solving viscous, incompressible, transient fluid problems involving free surfaces. Los Alamos Scientific Laboratory of the University of California, Report LA-3425
  33. Xue, M., Xu, H., Liu, Y. and Yue, D.K.P. (2001). Computations of fully nonlinear three dimensional wave-wave and wavebody interaction, Part 1. Dynamics of steep three-dimensional waves. Journal of Fluid Mechanics, 438, 11-39