참고문헌
- 김도삼, 허동수, 윤덕영, 정연태(1997). 수치파동수조 중에 놓인 잠제에 의한 쇄파의 수치해석에 관한 연구. 대한토목학회논문집, 17(II-3), 251-259
- 김도삼, 허동수, 정연태, 윤덕영(1998). 투과성잠제에 의한 쇄파의 수치해석에 관한 연구. 대한토목학회논문집, 18(II-1), 59-65
- 이광호, 이상기, 신동훈, 김도삼(2008). 복수 연직 주상구조 물에 작용하는 비선형파력과 구조물에 의한 비선형파랑 변형의 3차원 해석. 한국해안해양공학회논문집, 20(1), 1-13
- 조용준, 이 헌(2007). Lagrangian Dynamic Smagronsky 난류모형과 SPH를 이용한 쇄파역내에서의 비선형 천수거동에 관한 연구. 한국해안해양공학회지, 19(1), 81-96
- 허동수, 염경선, 배기성(2006). 혼성방파제에 작용하는 3차원 파압구조에 미치는 위상차의 영향. 대한토목학회논문집, 26(5B), 563-572
- Dalrymple, R.A. and Rogers, B.D. (2006). Numerical modeling of water waves with the SPH method. Coastal Engineering, 53(2-3), 141-147 https://doi.org/10.1016/j.coastaleng.2005.10.004
- Dold, J.W. and Peregrine, D.H. (1984). Steep unsteady water waves. An efficient computationalscheme, Proc. 19th ICCE, 955-967
- Galvin, C.J. (1972). Wave breaking in shallow water. Waves on Beaches and Resulting Sediment Transport. R. E. Myers, Ed., New York, 413-451
- Gomez-Gesteira, M., Crespo, A.J.C., de Castro, M. and Dalrymple, R.A. (2006). SPH accuracy to describe the wave impact on a tall structure. 1st SPHeric Workshop, Rome. (http://cfd.me.umist.ac.uk/sph/meetings/1stSPHERIC_workshop/Moncho_SPHERIC_2006.pdf)
- Gomez-Gesteira, M. and Dalrymple, R.A. (2004). Using a three-dimensional smoothed particle hydrodynamics method for wave impact on a tall structure. Journal of Waterways, Ports, Coastal and Ocean Engineering, 130(2), 63-69 https://doi.org/10.1061/(ASCE)0733-950X(2004)130:2(63)
- Guyenne, P. and Grilli, S.T. (2006). Numerical study of threedimensional overturning waves in shallow water. Journal of Fluid Mechanics, 547, 361-388 https://doi.org/10.1017/S0022112005007317
- Harlow, F.H. and Welch, J.E. (1965). Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Physics of Fluids, 8(12), 2182-2189 https://doi.org/10.1063/1.1761178
- Hirt, C.W. and Nichols, B.D. (1981). Volume of Fluid(VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39, 201-225 https://doi.org/10.1016/0021-9991(81)90145-5
- Hur, D.S., Kim, C.H., Kim, D.S. and Yoon, J.S. (2008). Simulation of the nonlinear dynamic interactions between waves, a submerged breakwater and the seabed. Ocean Engineering, (in press)
- Hur, D.S., Mizutani. N. (2003). Numerical estimation of the wave forces acting on a three-dimensional body on submerged breakwater. Coastal Engineering, 47, 329-345 https://doi.org/10.1016/S0378-3839(02)00128-X
- Hur, D.S., Mizutani. N., Kim, D.S. (2004). Direct 3-D numerical simulation of wave forces on asymmetric structures. Coastal Engineering, 51, 407-420 https://doi.org/10.1016/j.coastaleng.2004.05.003
- Kioka, W. (1983). Numerical analysis of breaking waves in a shallow water. Coastal Engineering in Japan, 26, 11-18
- Lee, K.H. (2006). A study on time domasin analysis of nonlinear dynamic interaction among wave, currents and bed materials. Doctoral Thesis, Nagoya University, Japan
- Lee, K.H., Mizutani, N., Hur, D.S. and Kamiya, A. (2007). The effect of groundwater on topographic changes in a gravel beach. Ocean Engineering, 34, 605-615 https://doi.org/10.1016/j.oceaneng.2005.10.026
- Lemos, C.M. (1992). A simple numerical technique for turbulent flows with free surfaces. International Journal of Numerical Methods in Fluids, 15, 123-146
- Lin, P.Z., Liu, P.L.-F. (1998a). A numerical study of breaking waves in the surf zone. Journal of Fluid Mechanics, 359, 239-264 https://doi.org/10.1017/S002211209700846X
- Lin, P.Z., Liu, P.L.-F. (1998b). Turbulence transport, vorticity dynamics and solute mixing under plunging breaking waves in surf zone. Journal of Geophysical Research, 103, 15677-15694 https://doi.org/10.1029/98JC01360
- Liu, W.K., Jun, S. and Zhang, Y.F. (1995). Reproducing kernel particle method. International Journal of Numerical Methods in Fluids, 20, 1081-1106 https://doi.org/10.1002/fld.1650200824
- Liu, Y., Xue, M. and Yue, P.K.P. (2001). Computations of fully nonlinear three-dimensional wave-wave and wave-body interaction, Part 2. Nonlinear waves and forces on a body. Journal of Fluid Mechanics, 438, 41-65
- Longuet-Higgins, M.S. and Cokelet, E.D. (1976). The deformation of steep surface waves on water, 1. A Numerical method of computation. Proc. Roy. Soc. London, A350, 1-26
- Miyata, H. (1986). Finite-difference simulation of breaking waves. Journal of Computational Physics, 65, 179-214 https://doi.org/10.1016/0021-9991(86)90011-2
- Mohaghan, J.J. (1992). Smoothed particle hydrodynamics. Annual Review of Astronomy and Astrorhysics, 30, 543-574 https://doi.org/10.1146/annurev.aa.30.090192.002551
- Mohaghan, J.J. (1994). Simulating free surface flows with SPH. Journal of Computational Physics, 110, 399-406 https://doi.org/10.1006/jcph.1994.1034
- Petit, H.A.H., van Gent, M.R.A. and van den Boscj, P. (1994). Numerical simulation and validation of plunging breakwaters using 2D Navier-Stokes model. Proc. 24th ICCE, 511-524
- Stokes, G..G. (1880). On the theory of oscillatory waves. In Mathematical and Physical Papers, 1, Cambridge University Press, London England, 315-326
- U. S. Army Coastal Engineering Research Center (1984). Shore Protection Manual. U. S. Goverment Printing Office, Washinton, DC
- Welch, J.E., Harlow, F.H., Shannon, J.P. and Daly, B.J. (1966). The MAC method. A computing technique for solving viscous, incompressible, transient fluid problems involving free surfaces. Los Alamos Scientific Laboratory of the University of California, Report LA-3425
- Xue, M., Xu, H., Liu, Y. and Yue, D.K.P. (2001). Computations of fully nonlinear three dimensional wave-wave and wavebody interaction, Part 1. Dynamics of steep three-dimensional waves. Journal of Fluid Mechanics, 438, 11-39