DOI QR코드

DOI QR Code

Plant Regeneration from Different Explant Types of Birdsfoot Trefoil (Lotus corniculatus L.)

버즈풋 트레포일 절편체 종류의 배양에 따른 식물체 재분화

  • Published : 2008.09.30

Abstract

Efficient plant regeneration system of birdsfoot trefoil (Lotus corniculatus L.) was development. The factors affecting the somatic embryo formation, its proliferation and regeneration capacity of leaf and stem explants of Empire cultivar was investigated. The highest number of somatic embryos was obtained on B5 medium supplemented with 1 mg/L NAA and 1 mg/L BA. Depending on different explants, highest frequency of embryogenic callus and regeneration were observed in Empire with leaf explants. The response from stem explants was slower and callus induction was less than that from leaf explants. Regenerated shoots formed complete plantlets in on 1/2 MS medium supplemented with 1 mg/L IBA. Regenerated plants were morphologically uniform with normal shape and growth pattern.

본 연구에서는 버즈풋 트레포일의 Empire 품종을 이용하여 조직 절편체의 종류 및 식물생장조절물질 첨가가 캘러스로부터 식물체 재분화에 미치는 영향을 조사하였다. 각각의 잎과 줄기 절편체를 배지에 치상한 후 배양한 결과, 모든 처리구에서 5-7일 후부터 캘러스 형성이 시작되었다. 캘러스를 유도함에 있어 첨가되는 auxin류로 NAA를 첨가 우수한 결과가 나타났다. 1 mg/L NAA와 1 mg/L BA가 첨가된 CM4 배지에서 잎 절편체 92%, 줄기 절편체 88%로 가장 높게 나타났으며 잎 절편체 배양하는 것이 더 줄기 절편체를 배양하는 것 보다 더 우수한 결과가 나타났다. 캘러스 배양 6주 후 캘러스로부터 shoot이 유도되기 시작하였으며 잎절편체를 치상하여 배양한 것은 대부분 multiple shoot으로 유도 되었다. 줄기신장 후 뿌리 유도를 위해 2$\sim$3 cm 이상 재분화 식물체의 shoot을 절단하여 1 mg/L IBA 첨가된 처리구에서 배양한 결과, 잎 절편체에서 유도된 shoot에서 98.3%, 줄기 절편체에서 유도된 shoot에서 93.3%로 조사되었다. 또한, 캘러스의 형성 없이 직접 뿌리를 내리고 뿌리의 발달도 잘 되었다. 본 연구를 통하여 확립된 재분화 시스템은 분자육종을 통한 신품종 버즈풋 트레포일의 개발에 유용하게 이용될 수 있을 것이다.

Keywords

References

  1. Akashi, R., T. Uchiyama, A. Sakamoto, O. Kawamura and F. Hoffmann. 1998. High-frequency embryogenesis from cotyledons of bird's-foot trefoil (Lotus corniculatus) and its effective utiliza- tion in Agrobacterium tumefaciens-mediated trans- formation. J plant Physiol. 152:84-91 https://doi.org/10.1016/S0176-1617(98)80106-5
  2. Bettany, A.J.E., S.J. Dalton, E. Timms, B. Manderyck, M.S. Dhanoa and P. Morris. 2003. Agrobacterium tumefaciens-mediated transformation of Festuca arundinacea (Schreb.) and Lolium multiflorum (Lam.). Plant Cell Rep. 21:437-444 https://doi.org/10.1007/s00299-002-0531-3
  3. Chen, L., C.K. Auh, P. Dowling, J. Bell, F. Chen, A. Hopkins, R.A. Dixon and Z.Y. Wang. 2003. Improved forage digestibility of tall fescue (Festuca arundinacea) by transgenic down- regulation of cinnamyl alcohol dehydrogenase. Plant Biotechnol. J. 1:437-449 https://doi.org/10.1046/j.1467-7652.2003.00040.x
  4. Cherian, S., M.P. Reddy and R.B. Ferreira. 2006. Transgenic plants with improved dehydration-stress tolerance: progress and future prospects. Biologia plantarum. 50:481-495 https://doi.org/10.1007/s10535-006-0141-y
  5. Dong, S. and R. Qu. 2005. High efficiency transformation of tall fescue with Agrobacterium tumefaciens. Plant Sci.. 168:1453-1458 https://doi.org/10.1016/j.plantsci.2005.01.008
  6. Doran, P.M. 2000. Foreign protein production in plant tissue cultures. Current Opinion in Biotech. 11:199-204 https://doi.org/10.1016/S0958-1669(00)00086-0
  7. Gamborg, O.L., R.A. Miller and K. Ojima. 1968. Exp. Cell. Res. 50:151 https://doi.org/10.1016/0014-4827(68)90403-5
  8. Hisano, H, A. Kanazawa, A. Kawakami, M. Yoshida, Y. Shimamoto and T. Yamada. 2004. Transgenic perennial ryegrass plants expressing wheat fructosyltransferase genes accumulate increased amounts of fructan and acquire increased tolerance on a cellular level to freezing. Plant Sci.. 167: 861-868 https://doi.org/10.1016/j.plantsci.2004.05.037
  9. Miller, P.R. and N.J. Ehlke. 2004. Condensed tannin relationships with in vitro forage quality analyses for birdsfoot trefoil. Crop Sci, 34: 1074-1079 https://doi.org/10.2135/cropsci1994.0011183X003400040044x
  10. Montague, A., A. Ziauddin, R. Lee, W.M. Ainley and J. Strommer. 2008. High-efficiency phos- phinothricin-based selection for alfalfa. transfor- mation. Plant Cell Tissue Organ Culture. DOI 10.1007/s11240-007-9274-8
  11. Murashige, T. and Skoog, F. 1962. A revise medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 15:473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  12. Sato, H. and T. Takamizo. 2006. Agrobacterium tumefaciens-mediated transformation of forage-type perennial ryegrass (Lolium perenne L.). Grassland Sci.. 52:95-98 https://doi.org/10.1111/j.1744-697X.2006.00053.x
  13. Schmidt, M.A., G.S. Martin, B.J. Artelt and W. A. Parrott. 2004. Increased transgene expression by breeding and selection in white clover. Crop Sci. 44:963-967 https://doi.org/10.2135/cropsci2004.0963
  14. Somers, D.A., D.A. Samac and P.M. Olhoft. 2003. Recent advances in legume transformation. Plant Physiol. 131:892-899 https://doi.org/10.1104/pp.102.017681
  15. Vinocur, B. and A. Altman. 2005. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current Opinion in Biotech. 16: 123-132 https://doi.org/10.1016/j.copbio.2005.02.001
  16. Voisey, C.R., D.W.R. White, B. Dudas, R.D. Appleby, P.M. Ealing and A.G. Scott. 1994. Agrobacterium-mediated transformation of white clover using direct shoot organogenesis. Plant Cell Rep. 13: 309-314
  17. Weeks, J.T., J. Ye and C.M. Rommens. 2008. Development of an in planta method for transformation of alfalfa. Transgenic Res. 10.1007/ s11248-007-9132-9
  18. Zhang, Y. and M.A. Rouf Mian. 2003. Functional genomics in forage and turf-present status and future prospects. African J. of Biotech. 12: 521-527