OSCULATORY WFI-ALGEBRAS

YOUNG BAE JUN

ABSTRACT. The notions of mote, beam and osculatory WFI-algebra are introduced, and several properties are investigated. Relations between osculatory WFI-algebra and associative WFI-algebra are provided. Characterizations of osculatory WFI-algebra are given.

1. Introduction

In 1990, W. M. Wu [7] introduced the notion of fuzzy implication algebra (FI-algebra, for short), and investigated several properties. In [6], Z. Li and C. Zheng introduced the notion of distributive (resp. regular, commutative) FI-algebra, and investigated the relations between such FI-algebra and MV-algebra. In [1], Y. B. Jun discussed several aspects of WFI-algebra. He introduced the notion of associative (resp. normal, medial) WFI-algebra, and investigated several properties. He gave conditions for a WFI-algebra to be associative/medial, and provided characterizations of associative/medial WFIalgebra, and showed that every associative WFI-algebra is a group in which every element is an involution. He also verified that the class of all medial WFI-algebras is a variety. Y. B. Jun and S. Z. Song [5] introduced the notions of simulative and/or mutant WFI-algebra and investigated some properties. They established characterizations of a simulative WFI-algebra, and gave a relation between an associative WFI-algebra and a simulative WFI-algebra. They also found some types for a simulative WFI-algebra to be mutant. Jun et al. [4] introduced the concept of ideals of WFI-algebra, and gave relations between a filter and an ideal. Moreover, they provided characterizations of an ideal, and established an extension property for an ideal. In [2] and [3], the present author discussed perfect (resp. weak and concrete) filters of WFIalgebra. In this paper, we introduce the notions of mote, beam and osculatory WFI-algebra, and investigate several properties. We give relations between osculatory WFI-algebra and associative WFI-algebra. We provide characterizations of osculatory WFI-algebra.

O2008 The Korean Mathematical Society

Received November 16, 2007.

²⁰⁰⁰ Mathematics Subject Classification. 03G25, 03C05, 08A05.

Key words and phrases. (associative, osculatory) WFI-algebra, subalgebra, mote, beam. This work was supported by the fund of Research Promotion Program (RPP-2007-042), Gyeongsang National University.

YOUNG BAE JUN

2. Preliminaries

Let $K(\tau)$ be the class of all algebras of type $\tau = (2,0)$. By a WFI-algebra we mean a system $\mathfrak{X} := (X, \ominus, 1) \in K(\tau)$ in which the following axioms hold:

(a1) $(x \in X) (x \ominus x = 1)$,

(a2) $(x, y \in X) \ (x \ominus y = y \ominus x = 1 \Rightarrow x = y),$

(a3) $(x, y, z \in X)$ $(x \ominus (y \ominus z) = y \ominus (x \ominus z)),$

(a4) $(x, y, z \in X)$ $((x \ominus y) \ominus ((y \ominus z) \ominus (x \ominus z)) = 1).$

We call the special element 1 the *unit*. For the convenience of notation, we shall write $[x, y_1, y_2, \ldots, y_n]$ for

$$(\cdots ((x \ominus y_1) \ominus y_2) \ominus \cdots) \ominus y_n.$$

We define $[x, y]^0 = x$, and for n > 0, $[x, y]^n = [x, y, y, \ldots, y]$, where y occurs *n*-times. We use the notation $x^n \ominus y$ instead of $x \ominus (\cdots (x \ominus (x \ominus y)) \cdots)$ in which x occurs *n*-times.

Proposition 2.1 ([1]). In a WFI-algebra \mathfrak{X} , the following are true:

 $\begin{array}{ll} (b1) & x \ominus [x,y]^2 = 1, \\ (b2) & 1 \ominus x = 1 \Rightarrow x = 1, \\ (b3) & 1 \ominus x = x, \\ (b4) & x \ominus y = 1 \Rightarrow [y,z,x \ominus z] = 1 \& [z,x,z \ominus y] = 1, \\ (b5) & [x,y,1] = [x,1,y \ominus 1], \\ (b6) & [x,y]^3 = x \ominus y. \end{array}$

A nonempty subset S of a WFI-algebra \mathfrak{X} is called a *subalgebra* of \mathfrak{X} if $x \ominus y \in S$ whenever $x, y \in S$. A nonempty subset F of a WFI-algebra \mathfrak{X} is called a *filter* of \mathfrak{X} if it satisfies:

(c1) $1 \in F$,

(c2) $(\forall x \in F) (\forall y \in X) (x \ominus y \in F \Rightarrow y \in F).$

A filter F of a WFI-algebra \mathfrak{X} is said to be *closed* [1] if F is also a subalgebra of \mathfrak{X} .

Proposition 2.2 ([1]). Let F be a filter of a WFI-algebra \mathfrak{X} . Then F is closed if and only if $x \ominus 1 \in F$ for all $x \in F$.

Proposition 2.3 ([1]). In a finite WFI-algebra, every filter is closed.

We now define a relation " \preceq " on \mathfrak{X} by $x \leq y$ if and only if $x \ominus y = 1$. It is easy to verify that a WFI-algebra is a partially ordered set with respect to \leq . A WFI-algebra \mathfrak{X} is said to be *associative* [1] if it satisfies $[x, y, z] = x \ominus (y \ominus z)$ for all $x, y, z \in X$. For a WFI-algebra \mathfrak{X} , the set

$$\mathcal{S}(\mathfrak{X}) := \{ x \in X \mid x \leq 1 \}$$

is called the *simulative part* of \mathfrak{X} . A WFI-algebra \mathfrak{X} is said to be *simulative* [5] if it satisfies

(S) $x \leq 1 \Rightarrow x = 1$.

Note that the condition (S) is equivalent to $\mathcal{S}(\mathfrak{X}) = \{1\}$.

Proposition 2.4 ([5]). The simulative part $S(\mathfrak{X})$ of a WFI-algebra \mathfrak{X} is a filter of \mathfrak{X} .

3. Osculatory WFI-algebra

We begin with the following definition.

Definition 3.1. A WFI-algebra \mathfrak{X} is said to be *osculatory* if it satisfies:

(3.1)
$$(\forall x, y \in X) (y \ominus x = 1 \Rightarrow [x, y]^2 = x)$$

Example 3.2. Let $X = \{1, a, b, c\}$ be a set with the following Cayley table.

Then $\mathfrak{X} := (X, \ominus, 1)$ is an osculatory WFI-algebra.

Let \mathfrak{X} be a WFI-algebra. Consider the following equation:

(3.2)
$$[x, y]^2 = [y, x, [y, x]^2]$$

Example 3.3. Let $X = \{1, a, b\}$ be a set with the following Cayley table.

Then $\mathfrak{X} := (X, \ominus, 1)$ is a WFI-algebra which satisfies the equation (3.2). But \mathfrak{X} is not associative since $[a, a]^2 = a \neq 1 = a^2 \ominus a$.

Example 3.4. Let $X = \{1, a, b\}$ be a set with the following Cayley table.

\ominus	1	a	b
1	1	a	b
a	b	1	a
b	a	b	1

Then $\mathfrak{X} := (X, \ominus, 1)$ is a WFI-algebra which does not satisfy the equation (3.2) since $[a, b]^2 = a \neq 1 = [b, a, [b, a]^2]$.

Lemma 3.5 ([1]). Let \mathfrak{X} be a WFI-algebra. Then the following are equivalent.

- (i) \mathfrak{X} is associative.
- (ii) $(\forall x \in X) \ (x \ominus 1 = x).$
- (iii) $(\forall x, y \in X) \ (x \ominus y = y \ominus x).$

Proposition 3.6. Every associative WFI-algebra satisfies the equation (3.2).

Proof. Let \mathfrak{X} be an associative WFI-algebra and let $x, y \in X$. Using the associativity of \mathfrak{X} , (a1), (b3) and Lemma 3.5, we have

$$egin{aligned} & [y,x,[y,x]^2] & = [y,x,y\ominus x,x] = 1 \ominus x = x \ & = x \ominus 1 = x \ominus (y\ominus y) = [x,y]^2. \end{aligned}$$

This completes the proof.

Proposition 3.7. If a WFI-algebra \mathfrak{X} satisfies the equation (3.2), then \mathfrak{X} is osculatory.

Proof. Let $x, y \in X$ be such that $y \ominus x = 1$. Using (b3), it is straightforward. \Box

Corollary 3.8. Every associative WFI-algebra is osculatory.

Definition 3.9. If an element m of a WFI-algebra \mathfrak{X} is maximal in (\mathfrak{X}, \preceq) , we say that m is a *mote* of \mathfrak{X} .

Denote by $M(\mathfrak{X})$ the set of all motes of \mathfrak{X} . For any $m \in M(\mathfrak{X})$, the set

$$B(m) := \{ x \in X \mid x \ominus m = 1 \}$$

is called a *beam* of \mathfrak{X} with respect to m (briefly, *m*-beam of \mathfrak{X}). Obviously, $1 \in M(\mathfrak{X})$ and $B(1) = \mathcal{S}(\mathfrak{X})$.

Example 3.10. Let $X = \{1, a, b, c, d\}$ be a set with the following Cayley table.

\ominus	1	a	b	c	d	
1	1	a	b	с	d	
a	1	1	b	c	d	
b	1	1	1	c	c	
c	c	c	d	1	b	
d	c	c	c	1	1	

Then $\mathfrak{X} := (X, \ominus, 1)$ is a WFI-algebra and $M(\mathfrak{X}) = \{1, c\}$. Hence $B(1) = \{1, a, b\}$ and $B(c) = \{c, d\}$.

Proposition 3.11. Every mote m of a WFI-algebra \mathfrak{X} is represented by the following identity:

$$(3.3) \qquad (\forall x \in X) \ (m = [m, x]^2).$$

Proof. Since $m \oplus [m, x]^2 = 1$ for all $x \in X$, we have $m = [m, x]^2$ for all $x \in X$.

We give a condition for an element of \mathfrak{X} to be a mote of \mathfrak{X} .

Theorem 3.12. If an element m of a WFI-algebra \mathfrak{X} satisfies the following equation:

$$(3.4) \qquad (\forall x, y \in X) (x \ominus m = [x, m, y, y])$$

then m is a mote of \mathfrak{X} .

44

Proof. Let $x \in X$ be such that $m \ominus x = 1$. Then

$$m = 1 \ominus m = [1, m, x, x] = [m, x]^2 = 1 \ominus x = x,$$

and so m is a mote of \mathfrak{X} .

The following is more simple condition for an element to be a mote.

Theorem 3.13. If an element m of a WFI-algebra \mathfrak{X} satisfies the following identity:

 $[m,1]^2 = m,$

then m is a mote of \mathfrak{X} .

Proof. Using (a3), (b1), (b4), (b5) and (3.5), we have

$$(3.6) \qquad [m,x,1] = [m,1,x \ominus 1] = x \ominus [m,1]^2 = x \ominus m$$
for all $x \in X$, and

 $(3.7) \quad [x,m,1,1] = [x,1,m \ominus 1] \ominus 1 = [x,1]^2 \ominus [m,1]^2 = [x,1]^2 \ominus m \preceq x \ominus m.$

for all $x \in X$. Using (b1), we have $x \ominus m \preceq [x, m, 1, 1]$. Hence

$$(3.8) x \ominus m = [x, m, 1, 1]$$

and so

(3.5)

(3.9)
$$[x, m, y, y] \preceq [y, 1, [x, m, y, 1]] = [y, [x, m, y], 1] = [x, m, y \ominus y, 1] = [x, m, 1, 1] = x \ominus m$$

for all $x, y \in X$. Combining (a2), (b1) and (3.9), we get

$$(3.10) x \ominus m = [x, m, y, y]$$

for all $x, y \in X$. It follows from Theorem 3.12 that m is a mote of \mathfrak{X} .

In the following theorem, we show that every mote m of a WFI-algebra \mathfrak{X} satisfies the condition (3.5).

Theorem 3.14. Every mote m of a WFI-algebra \mathfrak{X} satisfies the condition (3.5).

Proof. Let m be a mote of a WFI-algebra \mathfrak{X} . Using (a3) and (3.3), we obtain

$$(3.11) [m, x, y \ominus x] = y \ominus [m, x]^2 = y \ominus m$$

for all $x, y \in X$. Using (b1), (b4) and (3.11), we have

$$[m, x, z] \preceq [m, x, [z, x]^2] = [z, x, m].$$

It follows from (a3) and (b4) that

$$(3.13) \qquad [m, x, y \ominus z] = y \ominus [m, x, z] \preceq y \ominus [z, x, m] = [z, x, y \ominus m]$$

Using (a1), (b5) and (3.13), we get

$$[m, 1, x \ominus 1] = [m, x, 1] = [m, x, 1 \ominus 1] \preceq [1, x, 1 \ominus m] = x \ominus m.$$

Obviously, $x \ominus m \preceq [m, 1, x \ominus 1]$, and hence

$$(3.14) [m, 1, x \ominus 1] = x \ominus m.$$

This implies that $[m,1]^2 = [m,1,1\ominus 1] = 1 \ominus m = m$. This completes the proof.

Corollary 3.15. If m is a mote of a WFI-algebra \mathfrak{X} , then

$$(3.15) \qquad (\forall x \in X) \left([x \ominus m, 1]^2 = [x, 1]^2 \ominus m \right).$$

Proof. Using (b5) and Theorem 3.14, we have

$$[x \ominus m, 1]^2 = [x, 1]^2 \ominus [m, 1]^2 = [x, 1]^2 \ominus m.$$

This completes the proof.

Corollary 3.16. If p and q are motes of a WFI-algebra \mathfrak{X} , then so is $p \ominus q$.

Proof. Let p and q be motes of a WFI-algebra \mathfrak{X} . Then $[p,1]^2 = p$ and $[q,1]^2 = q$. Hence

$$[p\ominus q,1]^2=[p,1]^2\ominus [q,1]^2=p\ominus q,$$

and so $p \ominus q$ is a mote of \mathfrak{X} by Theorem 3.13.

Proposition 3.17. For any element x of a WFI-algebra \mathfrak{X} , the element $[x, 1]^2$ is a mote of \mathfrak{X} .

Proof. Let $x \in X$ and $m = [x, 1]^2$. Then

$$[m,1]^2 = [[x,1]^2,1]^2 = [x,1]^3 \ominus 1 = [x,1]^2 = m.$$

It follows from Theorem 3.13 that $[x, 1]^2$ is a mote of \mathfrak{X} .

Theorem 3.18. A WFI-algebra \mathfrak{X} is osculatory if and only if it satisfies the following identity:

(3.16)
$$(\forall x, y \in X) ([[x, y]^2, x]^2 = [x, y]^2).$$

Proof. Assume that a WFI-algebra \mathfrak{X} is osculatory. Since $x \ominus [x, y]^2 = 1$, it follows from (3.1) that

$$[x,y]^2 = [[x,y]^2,x]^2$$

which proves (3.16). Now let \mathfrak{X} be a WFI-algebra in which the identity (3.16) is valid. Let $x, y \in X$ be such that $y \oplus x = 1$. Using (b3) and (3.16), we have

$$[x,y]^2 = [1 \ominus x,y]^2 = [[y,x]^2,y]^2 = [y,x]^2 = 1 \ominus x = x.$$

Hence \mathfrak{X} is osculatory.

Lemma 3.19. For any motes p and q of \mathfrak{X} , we have

(i)
$$(\forall x, y \in X)$$
 $(x \in B(p) \& y \in B(q) \Rightarrow x \ominus y \in B(p \ominus q)).$
(ii) $(\forall x, y \in B(p))$ $([x, y, 1] = 1).$

46

Proof. (i) Let $x \in B(p)$ and $y \in B(q)$. Then $x \ominus p = 1$ and $y \ominus q = 1$. Hence

$$\begin{split} [x,y,p\ominus q] &= [x,y,[p\ominus q,1]^2] = [p,q,1]\ominus [x,y,1] \\ &= [p,q,1]\ominus [x,1,y\ominus 1] = [x,1,y\ominus [p\ominus q,1]^2] \\ &= [x,1,y\ominus (p\ominus q)] = [x,1,p\ominus (y\ominus q)] \\ &= [x,1,p\ominus 1] = [x,p,1] = 1\ominus 1 = 1, \end{split}$$

and so $x \ominus y \in B(p \ominus q)$.

(ii) It is direct consequence of (i).

Proposition 3.20. Let \mathfrak{X} be an osculatory WFI-algebra. Then

$$(3.17) \qquad (\forall m \in M(\mathfrak{X})) (\forall x, y \in X) (x, y \in B(m) \Rightarrow [x, y]^2 = [y, x]^2).$$

Proof. Let $m \in M(\mathfrak{X})$ and $x, y \in B(m)$. Then [x, y, 1] = 1 by Lemma 3.19(ii). Using Theorem 3.18, (a3) and (b6), we have

$$\begin{split} [y,x]^2 \ominus [x,y]^2 &= [y,x]^2 \ominus [[x,y]^2,x]^2 = [[x,y]^2,x,[y,x]^3] \\ &= [[x,y]^2,x,y \ominus x] = y \ominus [[x,y]^2,x]^2 \\ &= y \ominus [x,y]^2 = [x,y,y \ominus y] \\ &= [x,y,1] = 1. \end{split}$$

Similarly, $[x, y]^2 \ominus [y, x]^2 = 1$. This completes the proof.

Acknowledgements. The author is highly grateful to referees for their valuable comments and suggestions helpful in improving this paper.

References

- Y. B. Jun, Weak fuzzy implication algebras, Adv. Stud. Contemp. Math. 7 (2003), no. 1, 41–52.
- [2] _____, Perfect and concrete filters of WFI-algebras, Bull. Korean Math. Soc. (to appear).
- [3] _____, Weak and concrete filters of WFI-algebras, J. Appl. Math. Comput. (submitted).
- [4] Y. B. Jun, C. H. Park, and E. H. Roh, Characterizations of filters and ideals on WFIalgebras, Honam Math. J. 28 (2006), no. 4, 471–484.
- [5] Y. B. Jun and S. Z. Song, Simulative and mutant WFI-algebras, Honam Math. J. 28 (2006), no. 4, 559–572.
- [6] Z. Li and C. Zheng, Relations between fuzzy implication algebra and MV-algebra, J. Fuzzy Math. 9 (2001), no. 1, 201–205.
- [7] W. M. Wu, Fuzzy implication algebras, Fuzzy Systems Math. 4 (1990), no. 1, 56-63.

DEPARTMENT OF MATHEMATICS EDUCATION GYEONGSANG NATIONAL UNIVERSITY CHINJU 660-701, KOREA *E-mail address:* skywine@gmail.com