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ORDER SYSTEMS, IDEALS AND RIGHT FIXED MAPS OF
SUBTRACTION ALGEBRAS

Young Bae Jun, Chul Hwan Park, and Eun Hwan Roh

Abstract. Conditions for an ideal to be irreducible are provided. The
notion of an order system in a subtraction algebra is introduced, and
related properties are investigated. Relations between ideals and order
systems are given. The concept of a fixed map in a subtraction algebra
is discussed, and related properties are investigated.

1. Introduction

B. M. Schein [14] considered systems of the form (Φ; ◦, \), where Φ is a set
of functions closed under the composition “◦” of functions (and hence (Φ; ◦) is
a function semigroup) and the set theoretic subtraction “\” (and hence (Φ; \)
is a subtraction algebra in the sense of [2]). He proved that every subtraction
semigroup is isomorphic to a difference semigroup of invertible functions. B.
Zelinka [15] discussed a problem proposed by B. M. Schein concerning the struc-
ture of multiplication in a subtraction semigroup. He solved the problem for
subtraction algebras of a special type, called the atomic subtraction algebras.
Y. B. Jun et al. [10] introduced the notion of ideals in subtraction algebras
and discussed characterization of ideals. In [6], Y. B. Jun and H. S. Kim es-
tablished the ideal generated by a set, and discussed related results. Y. B. Jun
and K. H. Kim [11] introduced the notion of prime and irreducible ideals of a
subtraction algebra, and gave a characterization of a prime ideal. They also
provided a condition for an ideal to be a prime/irreducible ideal. In this paper,
we give conditions for an ideal to be irreducible. We introduce the notion of an
order system in a subtraction algebra, and investigate related properties. We
provide relations between ideals and order systems. We deal with the concept
of a fixed map in a subtraction algebra, and investigate related properties.

2. Preliminaries

By a subtraction algebra we mean an algebra (X;−) with a single binary
operation “−” that satisfies the following identities: for any x, y, z ∈ X,
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(S1) x− (y − x) = x;
(S2) x− (x− y) = y − (y − x);
(S3) (x− y)− z = (x− z)− y.

The last identity permits us to omit parentheses in expressions of the form
(x − y) − z. The subtraction determines an order relation on X: a ≤ b ⇔
a − b = 0, where 0 = a − a is an element that does not depend on the choice
of a ∈ X. The ordered set (X;≤) is a semi-Boolean algebra in the sense of [2],
that is, it is a meet semilattice with zero 0 in which every interval [0, a] is a
Boolean algebra with respect to the induced order. Here a ∧ b = a − (a − b);
the complement of an element b ∈ [0, a] is a− b; and if b, c ∈ [0, a], then

b ∨ c = (b′ ∧ c′)′ = a− ((a− b) ∧ (a− c))
= a− ((a− b)− ((a− b)− (a− c))).

In a subtraction algebra, the following are true (see [10, 11]):
(a1) (x− y)− y = x− y.
(a2) x− 0 = x and 0− x = 0.
(a3) (x− y)− x = 0.
(a4) x− (x− y) ≤ y.
(a5) (x− y)− (y − x) = x− y.
(a6) x− (x− (x− y)) = x− y.
(a7) (x− y)− (z − y) ≤ x− z.
(a8) x ≤ y if and only if x = y − w for some w ∈ X.
(a9) x ≤ y implies x− z ≤ y − z and z − y ≤ z − x for all z ∈ X.

(a10) x, y ≤ z implies x− y = x ∧ (z − y).
(a11) (x ∧ y)− (x ∧ z) ≤ x ∧ (y − z).
(a12) (x− y)− z = (x− z)− (y − z).
As a weak form of a subtraction algebra, Jun et al. discussed the weak

subtraction algebras as follows:

Definition 2.1 ([8]). By a weak subtraction algebra (WS-algebra), we mean a
triplet (W,−, 0), where W is a nonempty set, − is a binary operation on W
and 0 ∈ W is a nullary operation, called zero element, such that

(S3) (∀x, y, z ∈ W ) ((x− y)− z = (x− z)− y),
(S4) (∀x ∈ W ) (x− 0 = x, x− x = 0),

(a12) (∀x, y, z ∈ W ) ((x− y)− z = (x− z)− (y − z)).

Note that every subtraction algebra is a WS-algebra, but the converse is not
true in general (see [8]).

3. Order systems and ideals in WS-algebras

In what follows, let X denote a WS-algebra unless otherwise specified.

Definition 3.1. A nonempty subset A of X is called an ideal of X if it satisfies
(b1) 0 ∈ A
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(b2) (∀x ∈ X) (∀y ∈ A) (x− y ∈ A ⇒ x ∈ A).

The set of all ideals of X will be denoted by Id(X).

Lemma 3.2. An ideal A of a subtraction algebra X has the following property:

(∀x ∈ X)(∀y ∈ A)(x ≤ y ⇒ x ∈ A).

Proof. Straightforward. ¤
Theorem 3.3. Let A be a nonempty subset of X. Then the set

K :=

{
x ∈ X

∣∣∣∣∣
(· · · ((x− a1)− a2)− · · · )− an = 0
for some a1, a2, . . . , an ∈ A

}

is a minimal ideal of X containing A.

Proof. It is similar to the proof of Theorem 3.2 in [6]. ¤
We say that the ideal K is the ideal generated by A, and is denoted by 〈A〉.

Definition 3.4. An ideal A of X is said to be irreducible if for any ideals C
and D of X, A = C ∩D implies A = C or A = D.

Theorem 3.5. If A ∈ Id(X) satisfies the following assertion:

(1) (∀x, y ∈ X \A) (∃z ∈ X \A) (z − x ∈ A, z − y ∈ A),

then A is an irreducible ideal of X.

Proof. Assume that A ∈ Id(X) satisfies (1). Let C, D ∈ Id(X) be such that
A = C ∩ D, A 6= C and A 6= D. Then there exist x ∈ C \ A ⊂ X \ A and
y ∈ D \ A ⊂ X \ A. It follows from (1) that there exists z ∈ X \ A such that
z − x ∈ A and z − y ∈ A. Since x ∈ C and z − x ∈ A = C ∩ D ⊂ C, we
have z ∈ C because C is an ideal of X. Also, y ∈ D and z − y ∈ D, which
imply z ∈ D. Hence z ∈ C ∩D = A, which is a contradiction. Hence A is an
irreducible ideal of X. ¤
Corollary 3.6 ([11]). Let A ∈ Id(X). Assume that for any x, y ∈ X \A, there
exists z ∈ X \ A such that z ≤ x and z ≤ y. Then A is an irreducible ideal of
X.

Definition 3.7. Let X be a poset. A nonempty subset I of X is called an
order system of X if it satisfies:

(b3) (∀x ∈ X) (∀y ∈ I) (x ≤ y ⇒ x ∈ I),
(b4) (∀x, y ∈ I) (∃z ∈ I) (x ≤ z, y ≤ z).

The set of all order systems of a poset X will be denoted by Os(X). Note
that if X is a poset with the bottom element ⊥, then every order system of X
contains the bottom element ⊥.

Example 3.8. Let X = {0, a, b, c, d} be a poset with the following Hasse
diagram:
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Then I1 := {0, a} ∈ Os(X), I2 := {0, a, b, c} ∈ Os(X), but J1 := {0, b, c} /∈
Os(X) and J2 := {0, a, d} /∈ Os(X).

Theorem 3.9. For every WS-algebra X, we have Os(X) ⊂ Id(X).

Proof. Let I ∈ Os(X). Since I is nonempty, obviously 0 ∈ I. Now let x, y ∈ X
satisfy x − y ∈ I and y ∈ I. Then there exists z ∈ I such that x − y ≤ z and
y ≤ z by (b4). It follows from (a2) and (a12) that

x− z = (x− z)− 0 = (x− z)− (y − z) = (x− y)− z = 0 ∈ I

so from (b2) that x ∈ I. Therefore I ∈ Id(X), and so Os(X) ⊂ Id(X). ¤
The following example shows that an ideal is not an order system in general.

Example 3.10. (1) Let X = {0, a, b, c, d} be a set with the following Cayley
table:

− 0 a b c d
0 0 0 0 0 0
a a 0 a 0 a
b b b 0 0 b
c c b a 0 c
d d d d d 0

Then (X,−) is a subtraction algebra, and hence a WS-algebra. It is easy to
verify that Q1 := {0, a, d} ∈ Id(X), but Q1 := {0, a, d} /∈ Os(X).

(2) Let X = {0, a, b, c, d} be a set with the following Cayley table:

− 0 a b c d
0 0 0 0 0 0
a a 0 0 a 0
b b b 0 b b
c c c c 0 c
d d d d d 0

Then (X,−) is a WS-algebra, which is not a subtraction algebra. It is easy to
verify that Q2 := {0, a, c} ∈ Id(X), but Q2 := {0, a, c} /∈ Os(X).

To make an ideal to be an order system, we need more strong condition.

Definition 3.11 ([9]). A subtraction algebra X is said to be complicated if for
any a, b ∈ X the set

G (a, b) := {x ∈ X | x− a ≤ b}
has the greatest element.
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The greatest element of G (a, b) is denoted by a + b.

Lemma 3.12 ([9]). If X is a complicated subtraction algebra, then

(∀a, b ∈ X) (a ≤ a + b, b ≤ a + b).

Theorem 3.13. In a complicated subtraction algebra X, every ideal is an order
system.

Proof. Let Q be an ideal of a complicated subtraction algebra X. The condition
(b3) follows from Lemma 3.2. Now let x, y ∈ Q. Since (x+y)−x ≤ y, it follows
from Lemma 3.2 and (b2) that x + y ∈ Q so from Lemma 3.12 that (b4) is
valid. Hence Q is an order system of X. ¤
Corollary 3.14 ([9]). Let Q be a nonempty subset of a complicated subtraction
algebra X. Then Q is an ideal of X if and only if Q is an order system of X.

Theorem 3.15. Let Q ∈ Os(X). If Q is irreducible as an ideal of X, then

(∀a, b ∈ X \Q) (∃c ∈ X \Q) (c ≤ a, c ≤ b).

Proof. Assume that

(2) (∃a, b ∈ X \Q)(∀c ∈ X)(c ≤ a, c ≤ b ⇒ c ∈ Q).

Let Q(a) and Q(b) be the ideals of X generated by Q ∪ {a} and Q ∪ {b}
respectively. Then Q ⊂ Q(a) ∩Q(b). Let x ∈ Q(a) ∩Q(b). Then x ∈ Q(a) and
x ∈ Q(b). Thus

(· · · (((x− a)− c1)− c2)− · · · )− cm = 0

and
(· · · (((x− b)− d1)− d2)− · · · )− dn = 0

for some c1, c2, . . . , cm, d1, d2, . . . , dn ∈ Q. Since Q is an ideal of X, it follows
from (b1) and (b2) that x−a ∈ Q and x− b ∈ Q so from (b4) that there exists
z ∈ Q such that x− a ≤ z and x− b ≤ z. Hence

(x− z)− a = (x− a)− z = 0 and (x− z)− b = (x− b)− z = 0,

and so x − z ∈ Q by (2). But Q ∈ Id(X) and z ∈ Q, and thus x ∈ Q by
(b2). Thus Q(a) ∩ Q(b) ⊂ Q, and consequently Q = Q(a) ∩ Q(b) which is a
contradiction. ¤

4. Right fixed maps

Definition 4.1. A right fixed map α of X is defined to be a self map α : X → X
satisfying α(x− y) = α(x)− y for all x, y ∈ X.

Example 4.2. (1) Let X = {0, a, b} be a set with the following Cayley table:

− 0 a b
0 0 0 0
a a 0 a
b b b 0
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Then (X,−) is a subtraction algebra, and hence a WS-algebra. It can be easily
verify that the self map α of X defined by α(0) = 0, α(a) = 0, and α(b) = b is
a right fixed map.

(2) Consider a subtraction algebra, and hence a WS algebra, X = {0, a, b, c}
with the following Cayley table:

− 0 a b c
0 0 0 0 0
a a 0 a a
b b b 0 b
c c c c 0

Let β : X → X be defined by β(0) = 0, β(a) = 0, β(b) = c, and β(c) = c. Then
β is not a right fixed map since β(b− c) 6= β(b)− c.

(3) Let X = {0, a, b, c, d} be a set with the following Cayley table:

− 0 a b c d
0 0 0 0 0 0
a a 0 0 0 0
b b b 0 b b
c c c c 0 c
d d d d d 0

Then (X,−) is a WS-algebra, which is not a subtraction algebra. Let γ be a
self map of X defined by γ(0) = γ(a) = γ(b) = 0, γ(c) = c and γ(d) = d. Then
γ is a right fixed map.

(4) Let X = {0, a, b, c, d} be a set with the following Cayley table:

− 0 a b c d
0 0 0 0 0 0
a a 0 0 0 0
b b b 0 0 b
c c c c 0 c
d d d d d 0

Then (X,−) is a WS-algebra, which is not a subtraction algebra. Let α be a
self map of X defined by

α(x) =

{
0 if x ∈ {0, a},
x otherwise.

Then α is a right fixed map of X.

Proposition 4.3. If α is a right fixed map of X, then
(i) α(0) = 0,
(ii) (∀x ∈ X) (α(0− x) = 0),
(iii) (∀x ∈ X) (α(x) ≤ x),
(iv) (∀x, y ∈ X) (x ≤ y ⇒ α(x) ≤ y).
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Proof. (i) For every x, y ∈ X, we have

α(0) = α(0− α(0)) = α(0)− α(0) = 0.

(ii) For every x ∈ X, we have α(0− x) = α(0) = 0.
(iii) For any x ∈ X, we get 0 = α(0) = α(x−x) = α(x)−x, and so α(x) ≤ x.
(iv) Assume that x ≤ y for every x, y ∈ X. Then 0 = α(0) = α(x − y) =

α(x)− y, and so α(x) ≤ y. ¤

Definition 4.4. For a right fixed map α of X, the kernel of α, denoted by
ker(α), is defined to be the set

ker(α) = {x ∈ X | α(x) = 0}.
Obviously ker(α) 6= ∅ since 0 ∈ ker(α).

Theorem 4.5. Let α be a right fixed map of X. Then α is one-to-one if and
only if ker(α) = 0.

Proof. Assume that α is one-to-one and let x ∈ ker(α). Then α(x) = 0 = α(0),
and thus x = 0, i.e., ker(α) = {0}. Conversely suppose that ker(α) = {0}.
Let x, y ∈ X satisfy α(x) = α(y). Since α(y) ≤ y, it follows from (a9) that
α(x−y) = α(x)−y ≤ α(x)−α(y) = 0 so that α(x−y) = 0. Hence x−y ∈ ker(α),
and so x− y = 0. Similarly, y − x = 0. This proves that x = y. Therefore α is
one-to-one. ¤

Theorem 4.6. Let α be a right fixed map of X. Then α is one-to-one if and
only if α is the identity map.

Proof. Sufficiency is obvious. Suppose that α is one-to-one. For every x ∈ X,
we have

α(x− α(x)) = α(x)− α(x) = 0 = α(0)
and so x − α(x) = 0, i.e., x ≤ α(x). Since α(x) ≤ x for all x ∈ X, it follows
that α(x) = x so that α is the identity map. ¤

Theorem 4.7. Let α be a right fixed map of X. If α is idempotent, i.e.,
α(α(x)) = α(x) for all x ∈ X, then

(i) (∀x ∈ X) (α(x) = x ⇔ x ∈ Im(α)).
(ii) ker(α) ∩ Im(α) = {0}.

Proof. (i) Necessity is obvious. If x ∈ Im(α), then α(y) = x for some y ∈ X.
Thus α(x) = α(α(y)) = α(y) = x.

(ii) If x ∈ ker(α) ∩ Im(α), then α(x) = 0 and α(y) = x for some y ∈ X. It
follows that

0 = α(x) = α(α(y)) = α(y) = x

so that ker(α) ∩ Im(α) = {0}. ¤

The following example shows that a WS-algebra X does not satisfy the
assertion (a8) in general.
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Example 4.8. Let X = {0, a, b, c, d} be a WS-algebra, which is not a subtrac-
tion algebra, described in Example 4.2(4). We know that b ≤ c, but there does
not exist w ∈ X such that b = c− w.

Theorem 4.9. Let α be a right fixed map of a subtraction algebra X. Then

(i) (∀x ∈ X) (∃y ∈ ker(α), ∃z ∈ Im(α)) (z = x− y).
(ii) α is idempotent.

Proof. Since α(x) ≤ x for all x ∈ X, it follows from (a8) that ∃w ∈ X such
that α(x) = x− w so from (a6) that

x− (x− α(x)) = x− (x− (x− w)) = x− w = α(x).

Noticing that x − α(x) ∈ ker(α) and α(x) ∈ Im(α), we have the result (i).
Moreover, using (a1) implies that

α(α(x)) = α(x− w) = α(x)− w = (x− w)− w = x− w = α(x)

for all x ∈ X, which proves (ii). ¤

Corollary 4.10. If α is a right fixed map of a subtraction algebra X, then

(i) (∀x ∈ X) (α(x) = x ⇔ x ∈ Im(α)).
(ii) ker(α) ∩ Im(α) = {0}.

Denote by RF (X) the set of all right fixed maps of X. Let ª be a binary
operation on RF (X) defined by (αªβ)(x) = α(x)−β(x) for all α, β ∈ RF (X)
and x ∈ X. It is easy to verify that if X is a WS-algebra, then (RF (X),ª) is
a WS-algebra. Let IRF (X) denote the set of all idempotent right fixed maps
of X.

Theorem 4.11. For every α, β ∈ IRF (X), if α ª β = 0 in RF (X), then
Im(α) ⊂ Im(β).

Proof. Let α, β ∈ IRF (X) satisfy α ª β = 0. If y ∈ Im(α), then α(y) = y by
Theorem 4.7, and hence

0 = (αª β)(y) = α(y)− β(y) = y − β(y),

i.e., y ≤ β(y). Combining this with Proposition 4.3(iii), we get y = β(y) ∈
Im(β). Hence Im(α) ⊂ Im(β). ¤

Theorem 4.12. Let α, β ∈ IRF (X). Then

(i) αª β ∈ RF (X).
(ii) If α(β(x)) = β(α(x)) for all x ∈ X, then αª β ∈ IRF (X).
(iii) If Im(α) ⊂ Im(β) and α(β(x)) = β(α(x)) for all x ∈ X, then αªβ = 0

in RF (X).
(iv) Im(α) ∩ ker(β) ⊂ Im(αª β).
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Proof. (i) For every x, y ∈ X, we have

(αª β)(x− y) = α(x− y)− β(x− y)
= (α(x)− y)− (β(x)− y)
= (α(x)− β(x))− y

= (αª β)(x)− y,

and so αª β ∈ RF (X).
(ii) Assume that α(β(x)) = β(α(x)) for all x ∈ X. Let x ∈ X. Then

(αª β)((αª β)(x)) = (αª β)(α(x)− β(x))
= α(α(x)− β(x))− β(α(x)− β(x))
= (α(α(x))− β(x))− (β(α(x))− β(x))
= (α(x)− β(x))− (α(β(x))− β(x))
= (α(x)− β(x))− α(β(x)− β(x))
= (α(x)− β(x))− α(0)
= α(x)− β(x)
= (αª β)(x),

that is, αª β is idempotent. Hence αª β ∈ IRF (X).
(iii) Suppose that Im(α) ⊂ Im(β) and α(β(x)) = β(α(x)) for all x ∈ X.

Since α(x) ∈ Im(α) ⊂ Im(β) for all x ∈ X, it follows from Theorem 4.7 that

(αª β)(x) = α(x)− β(x) = β(α(x))− β(x)
= α(β(x))− β(x) = α(β(x)− β(x))
= α(0) = 0

for all x ∈ X. Therefore αª β = 0.
(iv) If y ∈ Im(α) ∩ ker(β), then β(y) = 0 and α(x) = y for some x ∈ X. It

follows from (a2) that

y = α(x) = α(α(x))− 0 = α(y)− β(y) = (αª β)(y) ∈ Im(αª β).

Therefore Im(α) ∩ ker(β) ⊂ Im(αª β). ¤
We pose a problem: If α ∈ RF (X), then is ker(α) an order system (or, an

ideal) of X?
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