참고문헌
- M. Deminsky, V.Jivotov, B. Potapkin, and V. Rusanov. "Plasma assisted production of hydrogen from hydrocarbons". Pure Appl. Chem., Vol.74, No.3, pp. 423-418, 2002 https://doi.org/10.1351/pac200274030423
- Kathleen Mc Hugh, "Hydrogen Production Methods". MPR-WP-0001, Associates Inc., February, 2005
- S.Z. Baykara " Hydrogen production by direct solar thermal decomposition of water, possibilities for improvement of process efficiency". International Journal of Hydrogen Energy 29 (2004) pp. 1451 - 1458
- Wu NL, Lee MH. "Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution. International Journal Hydrogen Energy, in press (doi: 10.1016/j.ijhydrene. 2004.02.13)
- Li Y, Lu G, Li S "Photocatalytic production of hydrogen in single component and mixture systems of electron donors and monitoring adsorption of donors by in situ infrared spectroscopy. Chemosphere 2003; 52 (5): 843 -50 https://doi.org/10.1016/S0045-6535(03)00297-2
- Kida T. Guan GQ, Yamada N, Ma TL, Kimura K, Yoshida A "Hydrogen production from sewage sludge solubilized in hot-compressed water using photocatalyst under light irradiation" International Journal Hydrogen Energy 2004; 29 (3): 269 -74 https://doi.org/10.1016/j.ijhydene.2003.08.007
- Abe T, Suzuli E, Nagoshi K, Miyashita K, Kaneko M "Electron source in photo induced hydrogen production on Pt- supported TiO2 particles. Journal Phys Chem B 1999; 103(7): 1119-23 https://doi.org/10.1021/jp983265x
- Linsebigler AL, Lu G, Yates Jr. JT "Photocatalysis on TiO2 surfaces: principle, mechanism, and selected results" Chem. Rev 1995; 95 (3): 735-58 https://doi.org/10.1021/cr00035a013
- Mills A, Le Hunte S "An overview of semiconductor photocatalysis". Journal Photochem Phtobiol A: Chem 1997; 108 (1): 1-35 https://doi.org/10.1016/S1010-6030(97)00118-4
- Legrini O, Oliveros E, Braun AM "Photochemical processes for water treatment". Chem Rev 1993; 93 (2): 671-98 https://doi.org/10.1021/cr00018a003
- Hoffman MR, Martin ST, Choi W, Bahneman DW."Environmental applications of semiconductor photocatalysis". Chem Rev 1995; 95(1): 69-96 https://doi.org/10.1021/cr00033a004
- Thammanoon S, Yoshikazu S, Susumu Y. "Photocatalytic evolution of hydrogen over mesoporous TiO2 supported NiO photocatalyst prepared by single-step sol-gel process with surfactant template". International Journal. Hydrogen Energy, 2004
- M.A. Rosen. "Energy and analyses of electrolytic hydrogen production". International Journal Hydrogen Energy, Vol.20, No.7,pp.547-553, 1995 https://doi.org/10.1016/0360-3199(94)00102-6
- Lekha N.M, Kanetoshi S, Hiroaki I, Noboru Y and Yasushi N. "Conversion of Methane to Hydrogen via Pulsed Corona Discharge", Journal of Natural Gas Chemistry 13, 2004
- T.Yamamoto, K.Ramanthan, P.A.Lawless, D.S. Ensor, J.Rnewsome, N.Plaks and G.H.Ramsey "Control of volatile organic compounds by an ac energized ferroelectric pellet reactor and pulsed corona reactor" IEEE Ind. Appl. Vol. 28,No 3, pp 528-534
- A.A. Nada, M.H. Barakat, H.A. Hamed, N.R.Mohamed, T.N. Veziroglu. "Study on the photocatalystic hydrogen production using suspended modified TiO2 photocatalyst". International Journal Hydrogen Energy Vol.30 (2005) pp. 687-691 https://doi.org/10.1016/j.ijhydene.2004.06.007
- S.Kodaira, Y.Sakisaka, T.Maruyama, Y.Haruyama, Y. Aiura, H.Kato, Solid state commune. 89 (1994) 9, and references therein
- Bahnemann, D. W.; Bockelmann, D.; Goslich, R. Solar Energy Materials 1991, 24, 564 https://doi.org/10.1016/0165-1633(91)90091-X
- M. R. Hoffman, S. T. Martin, W. Choi, and D. W. bahneman, Chem. Rev. 95, 69 (1995)][K. Kominami, J. Kato, Y. takada, y. Doushi, and B. Ohtani, Catal. Lett. 46, 235 (1997) https://doi.org/10.1023/A:1019022719479
- Jing D, Zhang Y, Guo L. "Study on the synthesis of Ni doped mesoporous TiO2 and its photocatalytic activity for hydrogen evolution in aqueous methanol solution". Chem. Phys. Letters 415 (2005) 74-78 https://doi.org/10.1016/j.cplett.2005.08.080
- N.Nakajima, H.Kato, T.Okazaki, Y.Sakisaka "Photoemission study of the modification of the electronic structure of transition-metal over layers on TiO2 surfaces III. Ni on TiO2 (001) and Cu on TiO2 (110)". Surface Science 561 (2004) 93-100 https://doi.org/10.1016/j.susc.2004.04.049