DOI QR코드

DOI QR Code

Temperature Dependent Terahertz Generation at Periodically Poled Stoichiometric Lithium Tantalate Crystal Using Femtosecond Laser Pulses

  • Yu, N.E. (Nonlinear Optics Laboratory, Advanced Photonics Research Institute, Gwangju Institute of Science and Technology) ;
  • Kang, C. (Nonlinear Optics Laboratory, Advanced Photonics Research Institute, Gwangju Institute of Science and Technology) ;
  • Yoo, H.K. (Nonlinear Optics Laboratory, Advanced Photonics Research Institute, Gwangju Institute of Science and Technology) ;
  • Jung, C. (Nonlinear Optics Laboratory, Advanced Photonics Research Institute, Gwangju Institute of Science and Technology) ;
  • Lee, Y.L. (Nonlinear Optics Laboratory, Advanced Photonics Research Institute, Gwangju Institute of Science and Technology) ;
  • Kee, C.S. (Nonlinear Optics Laboratory, Advanced Photonics Research Institute, Gwangju Institute of Science and Technology) ;
  • Ko, D.K. (Nonlinear Optics Laboratory, Advanced Photonics Research Institute, Gwangju Institute of Science and Technology) ;
  • Lee, J. (Nonlinear Optics Laboratory, Advanced Photonics Research Institute, Gwangju Institute of Science and Technology)
  • Received : 2008.07.14
  • Accepted : 2008.08.11
  • Published : 2008.09.25

Abstract

Coherent tunable terahertz generation was demonstrated in periodically poled stoichiometric lithium tantalate crystal via difference frequency generation of femtosecond laser pulses. Simultaneous forward and backward terahertz radiations were obtained around 1.35 and 0.63 THz, respectively at low temperature. By cooling the crystal to reduce losses caused by phonon absorptions, the generated THz bandwidth was as narrow as 23GHz at the center frequency of 0.63 THz. The measurement result of temperature-dependent showed gradual intensity increase of the generated terahertz pulse and red shift of the center frequency as the temperature decrease from 291 to 143 K, but insignificant reduction of the spectral bandwidth. Furthermore, the stoichiometric crystal was very suitable for the suppression of THz loss at low temperature compared to the congruent $LiNbO_3$ crystal.

Keywords

References

  1. S. Nakajimam H. Hoshina, M. Yamashita, C. Otani, and N. Miyoshi, "Terahertz imaging diagnostics of cancer tissues with a chemometrics technique," Appl. Phys. Lett., vol. 90, no. 4, pp. 041102-1-041102-3, 2007 https://doi.org/10.1063/1.2433035
  2. S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, "THz near-field imaging," Opt. Commun., vol. 150, no. 1998, pp. 22-26, 1998 https://doi.org/10.1016/S0030-4018(98)00044-3
  3. C. Waschke, H. G. Roskos, R. Schwedler, K. Lep, H. Kurz, and K. Kohler, "Coherennt submillimeter-wave emission from Bloch oscillations in a semiconductor superlattice," Phys. Rev. Lett., vol. 70, no. 21, pp. 3319-3322, 1993 https://doi.org/10.1103/PhysRevLett.70.3319
  4. M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Buttner, "Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett., vol. 77, no. 24, pp. 4049-4051, 2000 https://doi.org/10.1063/1.1332415
  5. Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, "Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate," Appl. Phys. Lett., vol. 76, no. 18, pp. 2505-2507, 2000 https://doi.org/10.1063/1.126390
  6. Y.-S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, "Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate," Appl. Phys. Lett., vol. 77, no. 9, pp. 1244-1246, 2000 https://doi.org/10.1063/1.1290046
  7. Y. Sasaki, H. Yokoyama, and H. Ito, “Surface-emitted continuous-wave terahertz radiation using periodically poled lithium niobate,” Electro. Lett., vol. 41, no. 12, pp. 712-713, 2005 https://doi.org/10.1049/el:20050587
  8. Y. J. Ding and W. Shi, "From backward THz difference-frequency generation to parametric oscillation," IEEE J. Select. Topic. in Quant. Elec., vol. 12, no. 3, pp. 352-359, 2006 https://doi.org/10.1109/JSTQE.2006.871953
  9. N. E. Yu, C. Jung, C.-S. Kee, Y. Lee, B.-A. Yu, D.-K. Ko, and J. Lee, “Backward terahertz generation in periodically poled lithium niobate crystal via difference frequency generation,” Jpn. J. Appl. Phys., vol. 46, no. 4A, pp. 1501-1504, 2007 https://doi.org/10.1143/JJAP.46.1501
  10. N. E. Yu, C. Kang, H. K. Yoo, C. Jung, Y. Lee , C.-S. Kee, D.-K. Ko, J. Lee, K. Kitamura, and S. Takekawa "Simultaneous forward and backward terahertz generations in periodically poled stoichiometric $LiTaO_3$ crystal using femtosecond pulses," Appl. Phys. Lett., vol. 93, no. 3, in press 2008
  11. A. Bruner, D. Eger, M. B. Oron, P. Blau, M. Katz, and S. Ruschin, "Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate," Optics Lett., vol. 28, no. 3, pp. 194-196, 2003 https://doi.org/10.1364/OL.28.000194
  12. M. Schall, H. Helm, and S. R. Keiding, "Far infrared properties of electro-optic crystals measured by THz timedomain spectroscopy," Int. J. Infrared and Millimeter Waves vol. 20, no. 4, pp. 595-604, 1999 https://doi.org/10.1023/A:1022636421426
  13. Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa "Stoichiometric $LiTaO_3$ single crystal growth by double crucible Czochralski method using automatic powder supply system," J. Cryst. Grow., vol. 197, no. 98, pp. 889-895, 1999 https://doi.org/10.1016/S0022-0248(98)00921-X
  14. N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, Y. Takada, J. Sakuma, and T. Sumiyoshi, "Efficient optical parametric oscillation based on periodically poled 1.0mol% MgO-doped stoichiometric $LiTaO_3$," Appl. Phys. Lett., vol. 85, no. 22, pp. 5134-5136, 2004 https://doi.org/10.1063/1.1828211
  15. G. P.Wiederrecht, T. P. Dougherty, L. Dhar, K. A. Nelson, D. E. Leaird, and A. M. Weiner, "Explanation of anomalous polariton dynamics in $LiTaO_3$," Phys. Rev. B., vol. 51, no. 2, pp. 916 -931, 1995 https://doi.org/10.1103/PhysRevB.51.916
  16. C. Kang, C.-S. Kee, I.-B. Sohn, H. K. Yoo, Y. Lee, N. E. Yu, C. Jung, D.-K. Ko, and J. Lee, "Generation and transmission properties of THz pulses using periodic/quasi-periodic structure," Proceeding of Advanced Lasers and Their applications workshop2008, Jeju, May1-3, pp. 50-51, 2008
  17. N. E. Yu, C. Jung, C.-S. Kee, Y. Lee, B.-A. Yu, D.-K. Ko, J. Lee, W.-J. Lee, J.-E. Kim, and H. Y. Park "Terahertz generation in quasi-phase-matching structures using femtosecond laser pulses," J. Korean Phys. Soc. vol. 51, no. 2, pp. 493-497, 2007 https://doi.org/10.3938/jkps.51.493

Cited by

  1. Terahertz Frequency Spreading Filter via One-dimensional Dielectric Multilayer Structures vol.13, pp.3, 2009, https://doi.org/10.3807/JOSK.2009.13.3.398
  2. Composition, surface morphology, optical properties and Ti profile characteristics of Ti-diffused LiTaO 3 strip waveguide vol.695, 2017, https://doi.org/10.1016/j.jallcom.2016.11.154
  3. Polarization-insensitive, shallow Ti-diffused near-stoichiometric LiTaO_3 strip waveguide for integrated optics vol.41, pp.11, 2016, https://doi.org/10.1364/OL.41.002513
  4. Development and Evaluation of an Electron Beam Source for Microscopy and Its Applications vol.14, pp.2, 2010, https://doi.org/10.3807/JOSK.2010.14.2.127