DOI QR코드

DOI QR Code

Vasorelaxing Effect of Hypoxia via Rho-kinase Inhibition on the Agonist-specific Vasoconstriction

  • Je, Hyun-Dong (Department of Pharmacology, College of Pharmacy, Catholic University of Daegu) ;
  • Shin, Chang-Yell (Korea and Research Laboratory, Dong-A Pharm. Co. Ltd.)
  • Published : 2008.09.30

Abstract

The present study was undertaken to determine whether hypoxia influences on the agonist-induced vascular smooth muscle contraction and, if so, to investigate the related mechanism. The measurement of isometric contractions using a computerized data acquisition system was combined with molecular experiments. Hypoxia significantly inhibited fluoride-induced contraction regardless of endothelial function, but there was no relaxation on thromboxane $A_2$ mimetic U-46619-induced contraction suggesting that other pathway such as $Ca^{2+}$ entry or thin filament regulation was not affected. In addition, hypoxia significantly decreased fluoride-induced increase of phospho-myosin-targeting subunit of myosin light chain phosphatase (pMYPT1). Interestingly, hypoxia didn't inhibit significantly phenylephrine-induced contraction suggesting that myosin light chain kinase (MLCK) activity or thin filament regulation is less important on the hypoxia-induced vasorelaxation in the denuded muscle than Rho-kinase activity. In conclusion, this study provides the evidence and possible related mechanism concerning the vasodilation effect of hypoxia on the agonist-specific contraction in rat aortic rings regardless of endothelial function.

Keywords

References

  1. Aalkjaer, C. and Lombard, J. H. (1995). Effect of hypoxia on force, intracellular pH and $Ca^{2+}$ concentration in rat cerebral and mesenteric small arteries. J. Physiol. 482, 409-419 https://doi.org/10.1113/jphysiol.1995.sp020528
  2. Amano, M., Ito, M., Kimura, K., Fukata, Y., Chihara, K., Nakano, T., Matsuura, Y. and Kaibuchi, K. (1996). Phosphorylation and activation of myosin by Rho-associated kinase (Rhokinase). J. Biol. Chem. 271, 20246-20249 https://doi.org/10.1074/jbc.271.34.20246
  3. Bigay, J., Deterre, P., Pfister, C. and Chabre, M. (1985). Fluoroaluminates activate transducin-GDP by mimicking the gamma-phosphate of GTP in its binding site. FEBS Lett. 191, 181-185 https://doi.org/10.1016/0014-5793(85)80004-1
  4. Blackmore, P. F. and Exton, J. H. (1986). Studies on the hepatic calcium-mobilizing activity of aluminum fluoride and glucagon. Modulation by cAMP and phorbol myristate acetate. J. Biol. Chem. 261, 11056-11063
  5. Chabre, M. (1990). Aluminofluoride and beryllofluoride complexes: a new phosphate analogs in enzymology. Trends. Biochem. Sci. 15, 6-10 https://doi.org/10.1016/0968-0004(90)90117-T
  6. Cockcroft, S. and Taylor, J. A. (1987). Fluoroaluminates mimic guanosine 5'-[gamma-thio]triphosphate in activating the polyphosphoinositide phosphodiesterase of hepatocyte membranes. Role for the guanine nucleotide regulatory protein Gp in signal transduction. Biochem. J. 241, 409-414 https://doi.org/10.1042/bj2410409
  7. Davis, M. J., Wu, X., Nurkiewicz, T. R., Kawasaki, J., Gui, P., Hill, M. A. and Wilson, E. (2001). Regulation of ion channels by protein tyrosine phosphorylation. Am. J. Physiol. 281, H1835-H1862
  8. Deng, J. T., Van Lierop, J. E., Sutherland, C. and Walsh, M. P. (2001). $Ca^{2+}$-independent smooth muscle contraction: a novel function for integrin-linked kinase. J. Biol. Chem. 276, 16365-16373 https://doi.org/10.1074/jbc.M011634200
  9. Ishida, Y. and Honda, H. (1992). Underlying mechanisms for hypoxia-induced relaxation of the guinea-pig isolated aorta. Jpn. J. Pharmacol. 58 (Suppl. 2), 307
  10. Jeon, S. B., Jin, F., Kim, J. I., Kim, S. H., Suk, K., Chae, S. C., Jun, J. E., Park, W. H. and Kim, I. K. (2006). A role for Rho kinase in vascular contraction evoked by sodium fluoride. Biochem. Biophys. Res. Commun. 343(1), 27-33 https://doi.org/10.1016/j.bbrc.2006.02.120
  11. Kitazawa, T., Masuo, M. and Somlyo, A. P. (1991). Proteinmediated inhibition of myosin light-chain phosphatase in vascular smooth muscle. Proc. Natl. Acad. Sci. USA 88, 9307-9310 https://doi.org/10.1073/pnas.88.20.9307
  12. Kanaho, Y., Moss, J. and Vaughan, M. (1985). Mechanism of inhibition of transducin GTPase activity by fluoride and aluminum. J. Biol. Chem. 260, 11493-11497
  13. Tsai, M. H. and Jiang, M. J. (2006). Rho-kinase-mediated regulation of receptor-agonist-stimulated smooth muscle contraction. Pflugers Arch. 453, 223-232 https://doi.org/10.1007/s00424-006-0133-y
  14. Low, A. M. (1996). Role of tyrosine kinase on $Ca^{2+}$ entry and refilling of agonist-sensitive $Ca^{2+}$ stores in vascular smooth muscles. Can. J. Physiol. Pharmacol. 74, 298-304 https://doi.org/10.1139/cjpp-74-3-298
  15. Muranyi, A., MacDonald, J. A., Deng, J. T., Wilson, D. P., Haystead, T. A., Wlash, M. P., Erdodi, F., Kiss, E., Wu, Y. and Hartshorne, D. J. (2002). Phosphorylation of the myosin phosphatase target subunit by integrin-linked kinase. Biochem. J. 366, 211-216 https://doi.org/10.1042/bj20020401
  16. Murphy, R. A. (1982). Myosin phosphorylation and crossbridge regulation in arterial smooth muscle. Hypertension 4, 3-7
  17. Nobe, K. and Paul, R. J. (2001). Distinct pathways of $Ca^{2+}$ sensitization in porcine coronary artery: effects of Rho-related kinase and protein kinase C inhibition on force and intracellular $Ca^{2+}$. Circ. Res. 88(12), 1283-1290 https://doi.org/10.1161/hh1201.092035
  18. Noda, M., Yasuda-Fukazawa, C., Moriishi, K., Kato, T., Okuda, T., Kurokawa, K. and Takuwa, Y. (1995). Involvement of rho in GTP gamma S-induced enhancement of phosphorylation of 20 kDa myosin light chain in vascular smooth muscle cells: inhibition of phosphatase activity. FEBS Lett. 367, 246-250 https://doi.org/10.1016/0014-5793(95)00573-R
  19. Pfitzer G. Invited reviews: regulation of myosin light chain phosphorylation in smooth muscle. J Appl Physiol 2001; 91:497-503 https://doi.org/10.1152/jappl.2001.91.1.497
  20. Shimizu, S., Bowman, P. S., Thorne, G. III and Paul, R. J. (2000). Effects of hypoxia on isomeric force, intracellular $Ca^{2+}$, pH, and energetics in porcine coronary artery. Circ. Res. 86, 862-870 https://doi.org/10.1161/01.RES.86.8.862
  21. Sakurada, S., Takuwa, N., Sugimoto, N., Wang, Y., Seto, M., Sasaki, Y. and Takuwa, Y. (2003). $Ca^{2+}$-dependent activation of Rho and Rho-kinase in membrane depolarizationinduced and receptor stimulation-induced vascular smooth muscle contraction. Circ. Res. 93, 548-556 https://doi.org/10.1161/01.RES.0000090998.08629.60
  22. Shenolikar, S. and Nairn, A. C. (1991). Protein phosphatases: recent progress. Adv. Second. Messenger. Phosphoprotein. Res. 23, 1-121
  23. Somlyo, A. P. and Somlyo, A. V. (1994). Signal transduction and regulation in smooth muscle. Nature 372, 231-236 https://doi.org/10.1038/372231a0
  24. Somlyo, A. P. and Somlyo, A. V. (1998). From pharmacomechanical coupling to G- proteins and myosin phosphatase. Acta. Physiol. Scand. 164, 437-448 https://doi.org/10.1046/j.1365-201X.1998.00454.x
  25. Somlyo, A. P. and Somlyo, A. V. (2000). Signal transduction by G-proteins, rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. J. Physiol. 522, 177-185 https://doi.org/10.1111/j.1469-7793.2000.t01-2-00177.x
  26. Tasaki, K., Hori, M., Ozaki, H., Karaki, H. and Wakabayashi, I. (2003). Difference in signal transduction mechanisms involved in 5-hydroxytryptamine- and U46619-induced vasoconstrictions. J. Smooth Muscle Res. 39, 107-117 https://doi.org/10.1540/jsmr.39.107
  27. Uehata, M., Ishizaki, T., Satoh, H., Ono, T., Kawahara, T., Morishita, T., Tamakawa, H., Yamagami, K., Inui, J., Maekawa, M. and Narumiya, S. (1997). Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389, 990-994 https://doi.org/10.1038/40187
  28. Wier W. G., and Morgan, K. G.. (2003) $\alpha$1-Adrenergic signaling mechanisms in contraction of resistance arteries. Rev Physiol Biochem Pharmacol 150, 91-139
  29. Wilson, D. P., Susnjar, M., Kiss, E., Sutherland, C. and Walsh, M. P. (2005). Thromboxane $A_2$-induced contraction of rat caudal arterial smooth muscle involves activation of $Ca^{2+}$ entry and $Ca^{2+}$ sensitization: Rho-associated kinase-mediated phosphorylation of MYPT1 at Thr-855, but not Thr-697. Biochem. J. 389, 763-774 https://doi.org/10.1042/BJ20050237
  30. Wooldridge, A. A., MacDonald, J. A., Erdodi, F., Ma, C., Borman, M. A., Hartshorne, D. J., and Haystead, T. A. (2004). Smooth muscle phosphatase is regulated in vivo by exclusion of phosphorylation of threonine 696 of MYPT1 by phosphorylation of Serine 695 in response to cyclic nucleotides. J. Biol. Chem. 279, 34496-34504 https://doi.org/10.1074/jbc.M405957200
  31. Young, M. A. and Vatner, S. F. (1986). Regulation of large coronary arteries. Circ. Res. 59, 579-596 https://doi.org/10.1161/01.RES.59.6.579
  32. Zeng, Y. Y., Benishin, C. G. and Pang, P. K. (1989). Guanine nucleotide binding proteins may modulate gating of calcium channels in vascular smooth muscle. I. Studies with fluoride. J. Pharmacol. Exp. Ther. 250, 343-351

Cited by

  1. Actin-sequestering protein, thymosin beta-4, is a novel hypoxia responsive regulator vol.27, pp.8, 2010, https://doi.org/10.1007/s10585-010-9350-z
  2. Hypoxia Induces Paclitaxel-Resistance through ROS Production vol.18, pp.2, 2008, https://doi.org/10.4062/biomolther.2010.18.2.145