Stereo-based Robust Human Detection on Pose Variation Using Multiple Oriented 2D Elliptical Filters

방향성 2차원 타원형 필터를 이용한 스테레오 기반 포즈에 강인한 사람 검출

  • 조상호 (포항공과대학교 컴퓨터공학과) ;
  • 김태완 (포항공과대학교 컴퓨터공학과) ;
  • 김대진 (포항공과대학교 컴퓨터공학과)
  • Published : 2008.10.15

Abstract

This paper proposes a robust human detection method irrespective of their pose variation using the multiple oriented 2D elliptical filters (MO2DEFs). The MO2DEFs can detect the humans regardless of their poses unlike existing object oriented scale adaptive filter (OOSAF). To overcome OOSAF's limitation, we introduce the MO2DEFs whose shapes look like the oriented ellipses. We perform human detection by applying four different 2D elliptical filters with specific orientations to the 2D spatial-depth histogram and then by taking the thresholds over the filtered histograms. In addition, we determine the human pose by using convolution results which are computed by using the MO2DEFs. We verify the human candidates by either detecting the face or matching head-shoulder shapes over the estimated rotation. The experimental results showed that the accuracy of pose angle estimation was about 88%, the human detection using the MO2DEFs outperformed that of using the OOSAF by $15{\sim}20%$ especially in case of the posed human.

이 논문은 방향성 2차원 타원형 필터(Multiple Oriented 2D Elliptical Filters;MO2DEFs)를 사용하여 스테레오 영상으로부터 포즈에 강인한 사람 검출을 제안한다. 기존의 물체 지향 크기 적응 필터(Object Oriented Scale Adaptive Filter;OOSAF)는 정면을 보고 있는 사람만을 검출하는 단점을 지니고 있는데 반해 제안한 방향성 2차원 타원형 필터는 사람의 크기나 포즈에 관계없이 사람을 검출하고 추적한다. 2D 공간-깊이 히스토그램에 특정 각도로 향하는 4개의 2차원 타원형 필터들을 적용하고, 필터링 된 히스토그램에서 임계값을 통해서 사람을 검출한 다음, MO2D2EFs 중 승적 결과가 가장 큰 2차원 타원형 필터의 방향을 사람의 방향으로 판단한다. 사람 후보들은 얼굴을 검출하거나 검출된 사람의 선택된 방향의 머리-어께 형태를 정합함으로서 검증한다. 실험 결과는 (1) 포즈 각도 예측의 정확도는 약 88%이고, (2) 제안한 MO2DEFs를 사용한 사람 검출의 성능이 OOSAF를 사용한 사람 검출의 성능보다 $15{\sim}20%$만큼 향상되었으며, 특히 정면이 아닌 사람의 경우에 더 향상이 있었다.

Keywords

References

  1. M. Hussein, W. A. Almageed, Y. Ran, and L. Davis, "Real-Time System for Human Detection, Tracking and Verification in Uncontrolled Camera Motion Environment," Proc. of IEEE International Conf. on Computer Vision Systems, pp. 41, 2006
  2. S. S. Ghidary, Y. Nakata, T. Takamori, and M. Hattori, "Localization and Approaching to the Human by Mobile Human Robot," Proc. of 9th IEEE International Workshop on Robot and Human Interactive Communication, pp. 63-68, 2000
  3. J. Zhou, and J. Hoang, "Real time robust human detection and tracking system," Proc. of IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, vol. 3, pp. 149, 2005
  4. C. Wren, A. Azarbayejani, T. Darell, "Pfinder: Real-time tracking of human body," IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 19, pp. 780-785, 1997 https://doi.org/10.1109/34.598236
  5. F. Xu, and K. Fujimura, "Human detection using depth and gray images," Proc. of IEEE Conf. on Advanced Video and Signal Based Surveillance, pp. 115-121, 2003
  6. D. Beymer, and K. Konolige, "Real-Time Tracking of Multiple People Using Continuous Detection," Proc. of International Conf. on Computer Vision Frame-Rate Workshop, 1999
  7. R. M. Salinas, E. Aguirre, M. G. Silvente, and A. Gonzalez, "People detection and tracking through stereo vision for human-robot interaction," Proc. of 4th Mexican international conf. on artificial intelligence, pp. 337-346, 2005 https://doi.org/10.1007/11579427_34
  8. Y. Ran, and Q. Zheng, "Multi moving people detection from binocular sequences," Proc. of the 2003 IEEE International Conf. on Acoustics, Speech, and Signal Processing, vol. 3, pp. 37-40, 2003
  9. W. Abd-Almageed, M. Hussein, M. Abdelkader, and L. Davis, "Real-Time Human Detection and Tracking from Mobile Vehicles," Proceedings of the 2007 IEEE Intelligent Transportation Systems Conference, pp. 149-154, 2007
  10. L. Li, Y. T. Koh, S. S. Ge, and W. Huang, "Stereo-Based Human Detection For Mobile Service Robots," Proc. of 8th International Conf. on Control, Automation, Robotics, and Vision, pp. 74-79, 2004
  11. L. Li, S. S. Ge, T. Sim, Y. T. Koh, and X. Hunag, "Object-Oriented Scale-Adaptive Filtering For Human Detection From Stereo Images," Proc. of the 2004 IEEE Conf. on Cybernetics and Intelligent Systems, pp. 135-140, 2004
  12. K. Kim, L. S. Davis, "Multi-camera Tracking and Segmentation of Occluded People on Ground Plane Using Search-Guided Particle Filtering," Proc. of the 9th European Conference on Computer Vision, vol. 3, pp. 98-109, 2006
  13. B. Jun, and D. Kim, "Robust Real-Time Face Detection Using Face Certainty Map," Proc. of International Conference on Biometrics, pp. 29-38, 2007 https://doi.org/10.1007/978-3-540-74549-5_4
  14. Y. Kameda, and M. Minoh, "A human motion estimation method using 3-successive video frames," Proc. of the International Conf. on Virtual Systems and Multimedia, 1996
  15. C. Kim, and J. N. Hwang, "A Fast and Robust Moving Object Segmentation in Video Sequences," Proc. of International Conf. on Image Processing, vol. 2, pp. 131-134, 1999
  16. T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, "Active Shape Models - Their Training and Application," Computer Vision and Image Understanding, vol. 61, num. 1, pp. 38-59, 1995 https://doi.org/10.1006/cviu.1995.1004
  17. Point Gray Research Inc. http://www.ptgrey.com/