References
- Banerjee, A., R. Sharma, and U. C. Banerjee. 2002. The nitriledegrading enzymes: Current status and future prospects. Appl. Microbiol. Biotechnol. 60: 33-44 https://doi.org/10.1007/s00253-002-1062-0
- Bigey, F., H. Chebrou, D. Fournand, and A. Arnaud. 1999. Transcriptional analysis of the nitrile-degrading operon from Rhodococcus sp. ACV2 and high level production of recombinant amidase with an Escherichia coli-T7 expression system. J. Appl. Microbiol. 86: 752-760 https://doi.org/10.1046/j.1365-2672.1999.00723.x
- Brady, D., A. Beeton, J. Zeevaart, C. Kgaje, F. van Rantwijk, and R. A. Sheldon. 2004. Characterisation of nitrilase and nitrile hydratase biocatalytic systems. Appl. Microbiol. Biotechnol. 64: 76-85 https://doi.org/10.1007/s00253-003-1495-0
- Chebrou, H., F. Bigey, A. Arnaud, and P. Galzy. 1996. Study of the amidase signature group. Biochim. Biophys. Acta 1298: 285-293 https://doi.org/10.1016/S0167-4838(96)00145-8
- Choi, S. K., C. Y. Lee, H. N. Chang, and J. S. Hwang. 1991. Optimum culture conditions of Brevibacterium sp. CH2 for production of nitrile hydratase. J. Microbiol. Biotechnol. 1: 136-141
- Cilia, E., A. Fabbri, M. Uriani, G. G. Scialdone, and S. Ammendola. 2005. The signature amidase from Sulfolobus solfataricus belongs to the CX3C subgroup of enzymes cleaving both amides and nitriles Ser195 and Cys145 are predicted to be the active site nucleophiles. FEBS J. 272: 4716-4724 https://doi.org/10.1111/j.1742-4658.2005.04887.x
- Doran, J. P., P. Duggan, M. Masterson, P. D. Turner, and C. O'Reilly. 2005. Expression and purification of a recombinant enantioselective amidase. Protein Expr. Purif. 40: 190-196 https://doi.org/10.1016/j.pep.2004.12.020
- Fawcett, J. K. and J. E. Scott. 1960. A rapid and precise method for the determination of urea. J. Clin. Pathol. 13: 156-159 https://doi.org/10.1136/jcp.13.2.156
- Fournand, D. and A. Arnaud. 2001. Aliphatic and enantioselective amidases: From hydrolysis to acyl transfer activity. J. Appl. Microbiol. 91: 381-393 https://doi.org/10.1046/j.1365-2672.2001.01378.x
- Fournand, D., F. Bigey, and A. Arnaud. 1998. Acyl transfer activity of an amidase from Rhodococcus sp. strain R312: Formation of a wide range of hydroxamic acids. Appl. Environ. Microbiol. 64: 2844-2852
- Hashimoto, Y., M. Nishiyama, O. Ikehata, S. Horinouchi, and T. Beppu. 1991. Cloning and characterization of an amidase gene from Rhodococcus species N-774 and its expression in Escherichia coli. Biochim. Biophys. Acta 1088: 225-233 https://doi.org/10.1016/0167-4781(91)90058-T
- Hirrlinger, B., A. Stolz, and H.-J. Knackmuss. 1996. Purification and properties of an amidase from Rhodococcus erythropolis MP50 which enantioselectively hydrolyzes 2-arylpropionamides. J. Bacteriol. 178: 3501-3507 https://doi.org/10.1128/jb.178.12.3501-3507.1996
- Hirrlinger, B. and A. Stolz. 1997. Formation of a chiral hydroxamic acid with an amidase from Rhodococcus erythropolis MP50 and subsequent chemical lossen rearrangement to a chiral amine. Appl. Environ. Microbiol. 63: 3390-3393
- Hughes, J., Y. C. Armitage, and K. C. Symes. 1998. Application of whole cell Rhodococcal biocatalysts in acrylic polymer manufacture. Antonie van Leeuwenhoek 74: 107-118 https://doi.org/10.1023/A:1001716332272
- Kato, Y., S. Yoshida, S.-X. Xie, and Y. Asano. 2004. Aldoxime dehydratase co-existing with nitrile hydratase and amidase in the iron-type nitrile hydratase-producer Rhodococcus sp. N-771. J. Biosci. Bioeng. 97: 250-259 https://doi.org/10.1016/S1389-1723(04)70200-5
- Kim, Y. J., H. S. Lee, S. S. Bae, J. H. Jeon, J. K. Lim, Y. Cho, K. H. Nam, S. G. Kang, S. J. Kim, S. T. Kwo, and J. H. Lee. 2007. Cloning, purification, and characterization of a new DNA polymerase from a hyperthermophilic archaeon, Thermococcus sp. NA1. J. Microbiol. Biotechnol. 17: 1090-1097
- Kobayashi, M., Y. Fujiwara, M. Goda, H. Komeda, and S. Shimizu. 1997. Identification of active sites in amidase: Evolutionary relationship between amide bond- and peptide bond-cleaving enzymes. Proc. Natl. Acad. Sci. USA 94: 11986-11991
- Komeda, H., H. Harada, S. Washika, T. Sakamoto, M. Ueda, and Y. Asano. 2004. A novel R-stereoselective amidase from Pseudomonas sp. MCI3434 acting on piperazine-2-tertbutylcarboxamide. Eur. J. Biochem. 271: 1580-1590 https://doi.org/10.1111/j.1432-1033.2004.04069.x
- Komeda, H., H. Harada, S. Washika, T. Sakamoto, M. Ueda, and Y. Asano. 2004. S-Stereoselective piperazine-2-tertbutylcarboxamide hydrolase from Pseudomonas azotoformans IAM 1603 is a novel L-amino acid amidase. Eur. J. Biochem. 271: 1465-1475 https://doi.org/10.1111/j.1432-1033.2004.04056.x
- Lee, C. Y., J. S. Hwang, and H. N. Chang. 1991. Effects of acrylonitrile and acrylamide on nitrile hydratase action of Brevibacterium sp. CH1 and CH2. J. Microbiol. Biotechnol. 1: 182-187
- Lee, D. H., D. C. Oh, Y. S. Oh, J. C. Malinverni, J. J. Kukor, and H. Y. Kahng. 2007. Cloning and characterization of monofunctional catalase from photosynthetic bacterium Rhodospirillum rubrum S1. J. Microbiol. Biotechnol. 17: 1460-1468
- Novo, C., S. Farnaud, R. Tata, A. Clemente, and P. R. Brown. 2002. Support for a three-dimensional structure predicting a Cys-Glu-Lys catalytic triad for Pseudomonas aeruginosa amidase comes from site-directed mutagenesis and mutations altering substrate specificity. Biochem. J. 365: 731-738 https://doi.org/10.1042/bj20011714
- Park, H.-J., H.-J. Park, K.-N. Uhm, and H.-K. Kim. 2006. Characterization of nitrile-hydrolyzing enzymes produced from Rhodococcus erythropolis. Kor. J. Microbiol. Biotechnol. 34: 204-210
- Shen, M.-H., J.-S. Kim, K. Sapkota, S.-E. Park, B.-S. Choi, S. Kim, H.-H. Lee, C.-S. Kim, H.-S. Chun, C.-I. Ryoo, and S.-J. Kim. 2007. Purification, characterization, and cloning of fibrinolytic metalloprotease from Pleurotus ostreatus mycelia. J. Microbiol. Biotechnol. 17: 1271-1283
- Snell, D. and J. Colby. 1999. Enantioselective hydrolysis of racemic ibuprofen amide to S-(+)-ibuprofen by Rhodococcus AJ270. Enzyme Microb. Technol. 24: 160-163 https://doi.org/10.1016/S0141-0229(98)00097-0
- Sonke, T., S. Ernste, R. F. Tandler, B. Kaptein, W. P. H. Peeters, F. B. J. van Assema, M. G. Wubbolts, and H. E. Schoemaker. 2005. L-Selective amidase with extremely broad substrate specificity from Ochrobactrum anthropi NCIMB 40321. Appl. Environ. Microbiol. 71: 7961-7973 https://doi.org/10.1128/AEM.71.12.7961-7973.2005
- Trott, S., S. Burger, C. Calaminus, and A. Stolz. 2002. Cloning and heterologous expression of an enantioselective amidase from Rhodococcus erythropolis strain MP50. Appl. Environ. Microbiol. 68: 3279-3286 https://doi.org/10.1128/AEM.68.7.3279-3286.2002
- Xie, S.-X., Y. Kato, H. Komeda, S. Yoshida, and Y. Asano. 2003. A gene cluster responsible for alkylaldoxime metabolism coexisting with nitrile hydratase and amidase in Rhodococcus globerulus A-4. Biochemistry 42: 12056-12066 https://doi.org/10.1021/bi035092u
- Yamada, H. and M. Kobayashi. 1996. Nitrile hydratase and its application to industrial production of acrylamide. Biosci. Biotech. Biochem. 60: 1391-1400 https://doi.org/10.1271/bbb.60.1391
- Yamamoto, K., K. Oishi, I. Fujimatsu, and K. Komatsu. 1991. Production of (R)-(-)-mandelic acid from mandelonitrile by Alcaligenes faecalis ATCC 8750. Appl. Environ. Microbiol. 57: 3028-3032
- Zheng, R.-C., Y.-G. Zheng, and Y.-C. Shen. 2007. A screening system for active and enantioselective amidase based on its acyl transfer activity. Appl. Microbiol. Biotechnol. 74: 256-262 https://doi.org/10.1007/s00253-006-0642-9