R-Stereoselective Amidase from Rhodococcus erythropolis No. 7 Acting on 4-Chloro-3-Hydroxybutyramide

  • Published : 2008.03.31

Abstract

Ethyl (S)-4-chloro-3-hydroxybutyrate is an intermediate for the synthesis of Atorvastatin, a chiral drug used for hypercholesterolemia. A Rhodococcus erythropolisstrain (No.7) able to convert 4-chloro-3-hydroxybutyronitrile into 4-chloro-3-hydroxybutyric acid has recently been isolated from soil. This activity has been regarded as having been caused by the successive actions of the nitrile hydratase and amidase. In this instance, the corresponding amidase gene was cloned from the R. erythropolis strain and expressed in Escherichia coli cells. A soluble active form of amidase enzyme was obtained at $18^{\circ}C$. The Ni column-purified recombinant amidase was found to have a specific activity of 3.89 U/mg toward the substrate isobutyramide. The amidase was found to exhibit a higher degree of activity when used with mid-chain substrates than with short-chain ones. Put differently, amongst the various amides tested, isobutyramide and butyramide were found to be hydrolyzed the most rapidly. In addition to amidase activity, the enzyme was found to exhibit acyltransferase activity when hydroxyl amine was present. This dual activity has also been observed in other enzymes belonging to the same amidase group (E.C. 3.5.1.4). Moreover, the purified enzyme was proven to be able to enantioselectively hydrolyze 4-chloro-3-hydroxybutyramide into the corresponding acid. The e.e. value was measured to be 52% when the conversion yield was 57%. Although this e.e. value is low for direct commercial use, molecular evolution could eventually result in this amidase being used as a biocatalyst for the production of ethyl (S)-4-chloro-3-hydroxybutyrate.

Keywords

References

  1. Banerjee, A., R. Sharma, and U. C. Banerjee. 2002. The nitriledegrading enzymes: Current status and future prospects. Appl. Microbiol. Biotechnol. 60: 33-44 https://doi.org/10.1007/s00253-002-1062-0
  2. Bigey, F., H. Chebrou, D. Fournand, and A. Arnaud. 1999. Transcriptional analysis of the nitrile-degrading operon from Rhodococcus sp. ACV2 and high level production of recombinant amidase with an Escherichia coli-T7 expression system. J. Appl. Microbiol. 86: 752-760 https://doi.org/10.1046/j.1365-2672.1999.00723.x
  3. Brady, D., A. Beeton, J. Zeevaart, C. Kgaje, F. van Rantwijk, and R. A. Sheldon. 2004. Characterisation of nitrilase and nitrile hydratase biocatalytic systems. Appl. Microbiol. Biotechnol. 64: 76-85 https://doi.org/10.1007/s00253-003-1495-0
  4. Chebrou, H., F. Bigey, A. Arnaud, and P. Galzy. 1996. Study of the amidase signature group. Biochim. Biophys. Acta 1298: 285-293 https://doi.org/10.1016/S0167-4838(96)00145-8
  5. Choi, S. K., C. Y. Lee, H. N. Chang, and J. S. Hwang. 1991. Optimum culture conditions of Brevibacterium sp. CH2 for production of nitrile hydratase. J. Microbiol. Biotechnol. 1: 136-141
  6. Cilia, E., A. Fabbri, M. Uriani, G. G. Scialdone, and S. Ammendola. 2005. The signature amidase from Sulfolobus solfataricus belongs to the CX3C subgroup of enzymes cleaving both amides and nitriles Ser195 and Cys145 are predicted to be the active site nucleophiles. FEBS J. 272: 4716-4724 https://doi.org/10.1111/j.1742-4658.2005.04887.x
  7. Doran, J. P., P. Duggan, M. Masterson, P. D. Turner, and C. O'Reilly. 2005. Expression and purification of a recombinant enantioselective amidase. Protein Expr. Purif. 40: 190-196 https://doi.org/10.1016/j.pep.2004.12.020
  8. Fawcett, J. K. and J. E. Scott. 1960. A rapid and precise method for the determination of urea. J. Clin. Pathol. 13: 156-159 https://doi.org/10.1136/jcp.13.2.156
  9. Fournand, D. and A. Arnaud. 2001. Aliphatic and enantioselective amidases: From hydrolysis to acyl transfer activity. J. Appl. Microbiol. 91: 381-393 https://doi.org/10.1046/j.1365-2672.2001.01378.x
  10. Fournand, D., F. Bigey, and A. Arnaud. 1998. Acyl transfer activity of an amidase from Rhodococcus sp. strain R312: Formation of a wide range of hydroxamic acids. Appl. Environ. Microbiol. 64: 2844-2852
  11. Hashimoto, Y., M. Nishiyama, O. Ikehata, S. Horinouchi, and T. Beppu. 1991. Cloning and characterization of an amidase gene from Rhodococcus species N-774 and its expression in Escherichia coli. Biochim. Biophys. Acta 1088: 225-233 https://doi.org/10.1016/0167-4781(91)90058-T
  12. Hirrlinger, B., A. Stolz, and H.-J. Knackmuss. 1996. Purification and properties of an amidase from Rhodococcus erythropolis MP50 which enantioselectively hydrolyzes 2-arylpropionamides. J. Bacteriol. 178: 3501-3507 https://doi.org/10.1128/jb.178.12.3501-3507.1996
  13. Hirrlinger, B. and A. Stolz. 1997. Formation of a chiral hydroxamic acid with an amidase from Rhodococcus erythropolis MP50 and subsequent chemical lossen rearrangement to a chiral amine. Appl. Environ. Microbiol. 63: 3390-3393
  14. Hughes, J., Y. C. Armitage, and K. C. Symes. 1998. Application of whole cell Rhodococcal biocatalysts in acrylic polymer manufacture. Antonie van Leeuwenhoek 74: 107-118 https://doi.org/10.1023/A:1001716332272
  15. Kato, Y., S. Yoshida, S.-X. Xie, and Y. Asano. 2004. Aldoxime dehydratase co-existing with nitrile hydratase and amidase in the iron-type nitrile hydratase-producer Rhodococcus sp. N-771. J. Biosci. Bioeng. 97: 250-259 https://doi.org/10.1016/S1389-1723(04)70200-5
  16. Kim, Y. J., H. S. Lee, S. S. Bae, J. H. Jeon, J. K. Lim, Y. Cho, K. H. Nam, S. G. Kang, S. J. Kim, S. T. Kwo, and J. H. Lee. 2007. Cloning, purification, and characterization of a new DNA polymerase from a hyperthermophilic archaeon, Thermococcus sp. NA1. J. Microbiol. Biotechnol. 17: 1090-1097
  17. Kobayashi, M., Y. Fujiwara, M. Goda, H. Komeda, and S. Shimizu. 1997. Identification of active sites in amidase: Evolutionary relationship between amide bond- and peptide bond-cleaving enzymes. Proc. Natl. Acad. Sci. USA 94: 11986-11991
  18. Komeda, H., H. Harada, S. Washika, T. Sakamoto, M. Ueda, and Y. Asano. 2004. A novel R-stereoselective amidase from Pseudomonas sp. MCI3434 acting on piperazine-2-tertbutylcarboxamide. Eur. J. Biochem. 271: 1580-1590 https://doi.org/10.1111/j.1432-1033.2004.04069.x
  19. Komeda, H., H. Harada, S. Washika, T. Sakamoto, M. Ueda, and Y. Asano. 2004. S-Stereoselective piperazine-2-tertbutylcarboxamide hydrolase from Pseudomonas azotoformans IAM 1603 is a novel L-amino acid amidase. Eur. J. Biochem. 271: 1465-1475 https://doi.org/10.1111/j.1432-1033.2004.04056.x
  20. Lee, C. Y., J. S. Hwang, and H. N. Chang. 1991. Effects of acrylonitrile and acrylamide on nitrile hydratase action of Brevibacterium sp. CH1 and CH2. J. Microbiol. Biotechnol. 1: 182-187
  21. Lee, D. H., D. C. Oh, Y. S. Oh, J. C. Malinverni, J. J. Kukor, and H. Y. Kahng. 2007. Cloning and characterization of monofunctional catalase from photosynthetic bacterium Rhodospirillum rubrum S1. J. Microbiol. Biotechnol. 17: 1460-1468
  22. Novo, C., S. Farnaud, R. Tata, A. Clemente, and P. R. Brown. 2002. Support for a three-dimensional structure predicting a Cys-Glu-Lys catalytic triad for Pseudomonas aeruginosa amidase comes from site-directed mutagenesis and mutations altering substrate specificity. Biochem. J. 365: 731-738 https://doi.org/10.1042/bj20011714
  23. Park, H.-J., H.-J. Park, K.-N. Uhm, and H.-K. Kim. 2006. Characterization of nitrile-hydrolyzing enzymes produced from Rhodococcus erythropolis. Kor. J. Microbiol. Biotechnol. 34: 204-210
  24. Shen, M.-H., J.-S. Kim, K. Sapkota, S.-E. Park, B.-S. Choi, S. Kim, H.-H. Lee, C.-S. Kim, H.-S. Chun, C.-I. Ryoo, and S.-J. Kim. 2007. Purification, characterization, and cloning of fibrinolytic metalloprotease from Pleurotus ostreatus mycelia. J. Microbiol. Biotechnol. 17: 1271-1283
  25. Snell, D. and J. Colby. 1999. Enantioselective hydrolysis of racemic ibuprofen amide to S-(+)-ibuprofen by Rhodococcus AJ270. Enzyme Microb. Technol. 24: 160-163 https://doi.org/10.1016/S0141-0229(98)00097-0
  26. Sonke, T., S. Ernste, R. F. Tandler, B. Kaptein, W. P. H. Peeters, F. B. J. van Assema, M. G. Wubbolts, and H. E. Schoemaker. 2005. L-Selective amidase with extremely broad substrate specificity from Ochrobactrum anthropi NCIMB 40321. Appl. Environ. Microbiol. 71: 7961-7973 https://doi.org/10.1128/AEM.71.12.7961-7973.2005
  27. Trott, S., S. Burger, C. Calaminus, and A. Stolz. 2002. Cloning and heterologous expression of an enantioselective amidase from Rhodococcus erythropolis strain MP50. Appl. Environ. Microbiol. 68: 3279-3286 https://doi.org/10.1128/AEM.68.7.3279-3286.2002
  28. Xie, S.-X., Y. Kato, H. Komeda, S. Yoshida, and Y. Asano. 2003. A gene cluster responsible for alkylaldoxime metabolism coexisting with nitrile hydratase and amidase in Rhodococcus globerulus A-4. Biochemistry 42: 12056-12066 https://doi.org/10.1021/bi035092u
  29. Yamada, H. and M. Kobayashi. 1996. Nitrile hydratase and its application to industrial production of acrylamide. Biosci. Biotech. Biochem. 60: 1391-1400 https://doi.org/10.1271/bbb.60.1391
  30. Yamamoto, K., K. Oishi, I. Fujimatsu, and K. Komatsu. 1991. Production of (R)-(-)-mandelic acid from mandelonitrile by Alcaligenes faecalis ATCC 8750. Appl. Environ. Microbiol. 57: 3028-3032
  31. Zheng, R.-C., Y.-G. Zheng, and Y.-C. Shen. 2007. A screening system for active and enantioselective amidase based on its acyl transfer activity. Appl. Microbiol. Biotechnol. 74: 256-262 https://doi.org/10.1007/s00253-006-0642-9