Expression and Characterization of Polyketide Synthase Module Involved in the Late Step of Cephabacin Biosynthesis from Lysobacter lactamgenus

  • Published : 2008.03.31

Abstract

The cephabacins produced by Lysobacter lactamgenus are ${\beta}$-lactam antibiotics composed of a cephem nucleus, an acetate residue, and an oligopeptide side chain. In order to understand the precise implication of the polyketide synthase (PKS) module in the biosynthesis of cephabacin, the genes for its core domains, ${\beta}$-ketoacyl synthase (KS), acyltransferase (AT), and acyl carrier protein (ACP), were amplified and cloned into the pET-32b(+) expression vector. The sfp gene encoding a protein that can modify apo-ACP to its active holo-form was also amplified. The recombinant KS, AT, apo-ACP, and Sfp overproduced in the form of $His_6$-tagged fusion proteins in E. coli BL21(DE3) were purified by nickel-affinity chromatography. Formation of stable peptidyl-S-KS was observed by in vitro acylation of the KS domain with the substrate [L-Ala-L-Ala-L-Ala-L-$^3H$-Arg] tetrapeptide-S-N-acetylcysteamine, which is the evidence for the selective recognition of tetrapeptide produced by nonribosomal peptide synthetase (NRPS) in the NRPS/PKS hybrid. In order to confirm whether malonyl CoA is the extender unit for acetylation of the peptidyl moiety, the AT domain, ACP domain, and Sfp protein were treated with $^{14}C$-malonyl-CoA. The results clearly show that the AT domain is able to recognize the extender unit and decarboxylatively acetylated for the elongation of the tetrapeptide. However, the transfer of the activated acetyl group to the ACP domain was not observed, probably attributed to the improper capability of Sfp to activate apo-ACP to the holo-ACP form.

Keywords

References

  1. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye birding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  2. Cheng, Y. Q., G. L. Tang, and B. Shen. 2003. Type I polyketide synthase requiring a discrete acyltransferase for polyketide biosynthesis. Proc. Natl. Acad. Sci. USA 100: 3149-3154
  3. Demirev, A. V., C. H. Lee, B. P. Jaishy, D. H. Nam, and D. D. Y. Ryu. 2006. Substrate specificity of nonribosomal peptide synthetase modules responsible for the biosynthesis of the oligopeptide moiety of cephabacin in Lysobacter lactamgenus. FEMS Microbiol. Lett. 255: 121-128 https://doi.org/10.1111/j.1574-6968.2005.00067.x
  4. Jaishy, B. P., S. K. Lim, I. D. Yoo, J. C. Yoo, J. K. Sohng, and D. H. Nam. 2006. Cloning and characterization of a gene cluster for the production of polyketide macrolide dihydrochalcomycin in Streptomyces sp. KCTC 0041BP. J. Microbiol. Biotechnol. 16: 764-770
  5. Kim, D., Y. K. Park, J. S. Lee, J .F. Kim, H. Jeong, B. S. Kim, and C. H. Lee. 2006. Analysis of a prodigiosin biosynthetic gene cluster from the marine bacterium Hahella chejuensis KCTC 2396. J. Microbiol. Biotechnol. 16: 1912-1918
  6. Kimura, H., M. Izawa, and Y. Sumino. 1996. Molecular analysis of the gene cluster involved in cephalosporin biosynthesis from Lysobacter lactamgenus YK90. Appl. Microbiol. Biotechnol. 45: 589-596 https://doi.org/10.1007/s002530050734
  7. Kimura, H., H. Miyashita, and Y. Sumino. 1996. Organization and expression in Pseudomonas putida of the gene cluster involved in cephalosporin biosynthesis from Lysobacter lactamgenus YK90. Appl. Microbiol. Biotechnol. 45: 490-501
  8. Kohli, R. M., J. W. Trauger, D. Schwarzer, M. A. Marahiel, and C. T. Walsh. 2000. Generality of peptide cyclization catalyzed by isolated thioesterase domains of nonribosomal peptide synthetases. Biochemistry 40: 7099-7108 https://doi.org/10.1021/bi010036j
  9. Liras, P. and J. F. Martiìn. 2006. Gene clusters for $\beta$-lactam antibiotics and control of their expression: Why have clusters evolved, and from where did they originate? Int. Microbiol. 9: 9-19
  10. Martin, J. F. 1998. New aspects of genes and enzymes for $\beta$-lactam antibiotic biosynthesis. Appl. Microbiol. Biotechnol. 50: 1-15 https://doi.org/10.1007/s002530051249
  11. Mofid, M. R., L. O. Essen, and M. A. Marahiel. 2004. Structurebased mutational analysis of the 4'-phosphopantetheinyl transferases sfp from Bacillus subtilis. Biochemistry 43: 4127-4136
  12. Nozaki, Y., K. Okonogi, N. Katayama, H. Ono, S. Harada, M. Kondo, and H. Okazaki. 1984. Cephabacins, new cephem antibiotics of bacterial origin. IV. Antibacterial activities, stability to $\beta$-lactamases and mode of action. J. Antibiot. 37: 1555-1565 https://doi.org/10.7164/antibiotics.37.1555
  13. Park, M. J., J. O. Yon, S. K. Lim, D. D. Y. Ryu, and D. H. Nam. 2004. Biochemical characterization of an ABC transporter gene involved in cephabacin biosynthesis in Lysobacter lactamgenus. J. Microbiol. Biotechnol. 14: 635-638
  14. Ryu, J. K. and D. H. Nam. 1997. Cloning of isopenicillin N synthase gene from Lysobacter lactamgenus. J. Microbiol. Biotechnol. 7: 373-377
  15. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning. A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  16. Sohn, Y. S., D. H. Nam, and D. D. Y. Ryu. 2001. Biosynthetic pathway of cephabacins in Lysobacter lactamgenus: Molecular and biochemical characterization of the upstream region of the gene cluster for engineering of novel antibiotics. Metabol. Eng. 3: 380-382 https://doi.org/10.1006/mben.2001.0200
  17. Tsubotani, S., T. Hida, F. Kasahara, Y. Wada, and S. Harada. 1984. Cephabacins, new cephem antibiotics of bacterial origin. III. Structural determination. J. Antibiot. 37: 1546-1554 https://doi.org/10.7164/antibiotics.37.1546
  18. Wu, J., K. Kinoshita, C. Khosla, and D. E. Cane. 2004. Biochemical analysis of the substrate specificity of the $\beta$-ketoacyl-acyl carrier protein synthase domain of module 2 of the erythromycin polyketide synthase. Biochemistry 43: 16301-16310 https://doi.org/10.1021/bi048147g