Inactivation of S. epidermidis, B. subtilis, and E. coli Bacteria Bioaerosols Deposited on a Filter Utilizing Airborne Silver Nanoparticles

  • Lee, Byung-Uk (Department of Mechanical Engineering, Konkuk University) ;
  • Yun, Sun-Hwa (Center for Environmental Technology Research, Korea Institute of Science and Technology) ;
  • Ji, Jun-Ho (Digital Appliance R&D Center, Samsung Electronics) ;
  • Bae, Gwi-Nam (Center for Environmental Technology Research, Korea Institute of Science and Technology)
  • Published : 2008.01.31

Abstract

In the present study, a control methodology utilizing airborne silver nanoparticles is suggested and tested with respect to its potential to control Gram-positive Staphylococcus epidermidis and Bacillus subtilis, and Gram-negative Escherichia coli bacteria bioaerosols deposited on filters. As it is known that the Gram-negative bacteria are sensitive to airflow exposure, the main focus of this study for testing the airborne silver nanoparticles effect was the Gram-positive Staphylococcus epidermidis and Bacillus subtilis bacteria bioaerosols whereas Escherichia coli bioaerosols were utilized for comparison. Airborne bacteria and airborne silver nanoparticles were quantitatively generated in an experimental system. Bioaerosols deposited on the filter were exposed to airborne silver nanoparticles. The physical and biological properties of the airborne bacteria and airborne silver nanoparticles were measured via aerosol measurement devices. From the experimental results, it was demonstrated that this method utilizing airborne silver nanoparticles offers potential as a bioaerosol control methodology.

Keywords

References

  1. Cho, K. H., J. E. Park, T. Osaka, and S. G. Park. 2005. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim. Acta 51: 956-960 https://doi.org/10.1016/j.electacta.2005.04.071
  2. Dibrov, P., J. Dzioba, K. Gosink, and C. C. Hase. 2002. Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholerae. Antimicrob. Agents Chemother. 46: 2668- 2670 https://doi.org/10.1128/AAC.46.8.2668-2670.2002
  3. Dougherty, E. R. 1990. Probability and Statistics for the Engineering, Computing and Physical Sciences, Chapter 8. Prentice Hall, Englewood Cliffs, New Jersey
  4. Feng, Q. L., J. Wu, G. Q. Chen, F. Z. Cui, T. N. Kim, and J. O. Kim. 2000. A mechanistic study of the antimicrobial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52: 662-668 https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
  5. Friedlander, S. K. 2000. Smoke, Dust, and Haze, 2nd Ed. Oxford University Press
  6. Grinshpun, S. A., A. Adhikari, B. U. Lee, M. Trunov, G. Mainelis, M. Yermakov, and T. Reponen. 2004. Indoor air pollution control through ionization, pp. 689-704. In C. A. Brebbia (ed.), Air Pollution XII. Wessex Institute of Technology Press, Southampton, U.K
  7. Jaenicke, R. 2005. Abundance of cellular material and proteins in the atmosphere. Science 308: 73 https://doi.org/10.1126/science.1106335
  8. Kim, H. S., Y. M. Bae, Y. K. Kim, B. K. Oh, and J. W. Choi. 2006. Antibody layer fabrication for protein chip to detect E. coli 0157:H7, using microcontact printing technique. J. Microbiol. Biotechnol. 16: 141-144
  9. Kim, H. W., I. W. Roh, K. M. Kim, I. S. Jang, S. D. Ha, K. B. Song, S. K. Park, W. Y. Lee, K. Youn, and D. H. Bae. 2006. Antimicrobial edible film developed from defatted corn germ meal fermented by Bacillus subtilis. J. Microbiol. Biotechnol. 16: 597-604
  10. Lee, B. U., S. H. Kim, and S. S. Kim. 2002. Hygroscopic growth of E. coli and B. subtilis bioaerosols. J. Aerosol Sci. 33: 1721-1723 https://doi.org/10.1016/S0021-8502(02)00114-3
  11. Lee, B. U. and S. S. Kim. 2003. Sampling E. coli and B. subtilis bacteria bioaerosols by new type of impactor with cooled impaction plate. J. Aerosol Sci. 34: 1097-1100 https://doi.org/10.1016/S0021-8502(03)00076-4
  12. Lee, B. U. and Y. H. Lee. 2005. Usage of the heating tube to control E. coli bacteria bioaerosols. Particle Aerosol Res. 1: 39-45
  13. Lee, B. U., M. Yermakov, and S. A. Grinshpun. 2005. Filtering efficiency of N95- and R95-type facepiece respirators, dust-mist facepiece respirators, and surgical masks operating in unipolarly ionized indoor air environments. Aerosol Air Qual. Res. 5: 25-38 https://doi.org/10.4209/aaqr.2005.06.0003
  14. Lee, B. U., M. Yermakov, and S. A. Grinshpun. 2004. Unipolar ion emission enhances respiratory protection against fine and ultrafine particles. J. Aerosol Sci. 35: 1359-1368 https://doi.org/10.1016/j.jaerosci.2004.05.006
  15. Lee, B. U., M. Yermakov, and S. A. Grinshpun. 2004. Removal of fine and ultrafine particles from indoor air environments by the unipolar ion emission. Atmos. Environ. 38: 4815-4823 https://doi.org/10.1016/j.atmosenv.2004.06.010
  16. Lee, Y. H. and B. U. Lee. 2006. Inactivation of airborne E. coli and B. subtilis bioaerosols utilizing thermal energy. J. Microbiol. Biotechnol. 16: 1684-1689
  17. Li, P., J. Li, C. Wu, Q. Wu, and J. Li. 2005. Synergistic antibacterial effects of $\beta$-lactam antibiotic combined with silver nanoparticles. Nanotechnology 16: 1912-1917 https://doi.org/10.1088/0957-4484/16/9/082
  18. Madigan, M. T., J. M. Martinko, and J. Parker. 2000. Brock Biology of Microorganisms, Chapter 3, 13. 9th Ed., Prentice- Hall, Inc
  19. Morones, J. R., J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramirez, and M. J. Yacaman. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology 16: 2346-2353 https://doi.org/10.1088/0957-4484/16/10/059
  20. Mullican, C. L., L. M. Buchanan, and R. K. Hoffman. 1971. Thermal inactivation of aerosolized Bacillus subtilis var. niger spores. Appl. Microbiol. 22: 557-559
  21. Nicas, M. and S. L. Miller. 1999. A multi-zone model evaluation of the efficacy of upper-room air ultraviolet germicidal irradiation. Appl. Occup. Environ. Hyg. 14: 317-328 https://doi.org/10.1080/104732299302909
  22. Noakes, C. J., L. A. Fletcher, C. B. Beggs, P. A. Sleigh, and K. G. Kerr. 2004. Development of a numerical model to simulate the biological inactivation of airborne microorganisms in the presence of ultraviolet light. J. Aerosol Sci. 35: 489-507
  23. Riley, R. L., M. Knight, and G. Middlebrook. 1976. Ultraviolet susceptibility of BCG and virulent tubercle bacilli. Am. Rev. Respir. Dis. 113: 413-418
  24. Sondi, I. and B. Salopek-Sondi. 2004. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 275: 177-182 https://doi.org/10.1016/j.jcis.2004.02.012
  25. Varma, J. K., K. D. Greene, M. E. Reller, S. M. DeLong, J. Trottier, S. F. Nowicki, M. DiOrio, E. M. Koch, T. L. Bannerman, S. T. York, M. A. Lambert-Fair, J. G. Wells, and P. S. Mead. 2003. An outbreak of Escherichia coli O157 infection following exposure to a contaminated building. J. A. M. A. 290: 2709-2712 https://doi.org/10.1001/jama.290.20.2709
  26. Yeo, H. and J. Kim. 2002. SPM and fungal spores in the ambient air of west Korea during the Asian dust (Yellow sand) period. Atmos. Environ. 36: 5437-5442 https://doi.org/10.1016/S1352-2310(02)00672-6
  27. Zucker, B. A., S. Trojan, and W. Muller. 2000. Airborne Gramnegative bacterial flora in animal houses. J. Vet. Med. B Infect. Dis. Vet. Public Health B 47: 37-46 https://doi.org/10.1046/j.1439-0450.2000.00308.x