Translocation of VP1686 Upregulates RhoB and Accelerates Phagocytic Activity of Macrophage Through Actin Remodeling

  • Bhattacharjee, Rabindra N. (Akira Innate Immunity Project, Exploratory Research for Advance Technology, Japan Science and Technology Agency, Osaka University) ;
  • Park, Kwon-Sam (Food Science and Biotechnology Major, College of Ocean Science and Technology, Kusan National University) ;
  • Chen, Xiuhao (Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University) ;
  • Iida, Tetsuya (Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University) ;
  • Honda, Takeshi (Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University) ;
  • Takeuchi, Osamu (Akira Innate Immunity Project, Exploratory Research for Advance Technology, Japan Science and Technology Agency, Osaka University) ;
  • Akira, Shizuo (Akira Innate Immunity Project, Exploratory Research for Advance Technology, Japan Science and Technology Agency, Osaka University)
  • Published : 2008.01.31

Abstract

Here, we report that Vibrio parahaemolyticus induces a rapid remodeling of macrophage actin and activates RhoB GTPase. Mutational analysis revealed that the effects depend on type III secretion system 1 regulated translocation of a V. parahaemolyticus effector protein, VP1686, into the macrophages. Remodeling of actin is shown to be necessary for increased bacterial uptake followed by initiation of apoptosis in macrophages. This provides evidence for functional association of the VP1686 in triggering an eat me-and-die signal to the host.

Keywords

References

  1. Akira, S. and T. Takeda. 2004. Toll-like receptor signaling. Nat. Rev. Immunol. 4: 499-511 https://doi.org/10.1038/nri1391
  2. Balana, M. E., F. Niedergang, A. Subtil, A. Alcover, P. Chavrier, and A. Dautry-Varsat. 2005. ARF6 GTPase controls bacterial invasion by actin remodelling. J. Cell Sci. 118: 2201-2210 https://doi.org/10.1242/jcs.02351
  3. Bhattacharjee, R. N., K. S. Park, Y. Kumagai, K. Okada, M. Yamamoto, S. Uematsu, K. Matsui, H. Kumar, T. Kawai, T. Iida, T. Honda, O. Takeuchi, and S. Akira. 2006. VP1686, a Vibrio type III secretion protein, induces toll-like receptor independent apoptosis in macrophage through NF-kappa B inhibition. J. Biol. Chem. 281: 36897-36904 https://doi.org/10.1074/jbc.M605493200
  4. Bouquet, P. and E. Lemichez. 2003. Bacterial virulence factor targeting Rho GTPases; parasitism or symbiosis? Trends Cell Biol. 13: 3793-3803
  5. Clifton, D. R., K. A. Fields, S. S. Grieshaber, C. A. Dooley, E. R. Fischer, D. J. Mead, R. A. Carabeo, and T. Hackstadt. 2004. A chlamydial type III translocated protein is tyrosinephosphorylated at the site of entry and associated with recruitment of actin. Proc. Natl. Acad. Sci. USA 101: 10166- 10171
  6. Coleman, M. L. and M. F. Olson. 2002. Rho GTPase signaling pathways in the morphological changes associated with apoptosis. Cell Death Differ. 9: 493-504 https://doi.org/10.1038/sj.cdd.4400987
  7. Huek, C. J. 1998. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62: 379-433
  8. Mills, S. D., A. Boland, M. P. Sory, P. van der Smissen, C. Kerbourch, B. B. Finlay, and G. R. Cornelis. 1997. Yersinia enterocolitica induces apoptosis in macrophages by a process requiring functional type III secretion and translocation mechanisms and involving YopP, presumably acting as an effector protein. Proc. Natl. Acad. Sci. USA 94: 12638-12643
  9. Niedergang, F. and P. Chavrier. 2005. Regulation of phagocytosis by Rho GTPases. Curr. Top. Microbiol. Immunol. 291: 43-60 https://doi.org/10.1007/3-540-27511-8_4
  10. Nomura, T., H. Hamashima, and K. Okamoto. 2000. Carboxy terminal region of haemolysin of Aeromonas sobria triggers dimerization. Microb. Pathog. 28: 25-36 https://doi.org/10.1006/mpat.1999.0321
  11. Ono, T., K. S. Park, M. Ueta, T. Iida, and T. Honda. 2006. Identification of proteins secreted via Vibrio parahaemolyticus type III secretion system 1. Infect. Immunol. 74: 1032-1042 https://doi.org/10.1128/IAI.74.2.1032-1042.2006
  12. Park, K. S., T. Ono, M. Rokuda, M. H. Jang, T. Iida, and T. Honda. 2004. Cytotoxicity and enterotoxicity of the thermostable direct hemolysin-deletion mutants of Vibrio parahaemolyticus. Microbiol. Immunol. 48: 313-318 https://doi.org/10.1111/j.1348-0421.2004.tb03512.x
  13. Park, K. S., T. Ono, M. Rokuda, M. H. Jang, K. Okada, T. Iida, and T. Honda. 2004. Functional characterization of two type III secretion systems of Vibrio parahaemolyticus. Infect. Immunol. 72: 6659-6665 https://doi.org/10.1128/IAI.72.11.6659-6665.2004
  14. Park, K. S., M. Arita, T. Iida, and T. Honda. 2005. vpaH, a gene encoding a novel histone-like nucleoid structure-like protein that was possibly horizontally acquired, regulates the biogenesis of lateral flagella in trh-positive Vibrio parahaemolyticus TH3996. Infect. Immunol. 73: 5754-5761 https://doi.org/10.1128/IAI.73.9.5754-5761.2005
  15. Takeda, K., T. Kaisho, and S. Akira. 2003. Toll-like receptors. Annu. Rev. Immunol. 21: 335-376 https://doi.org/10.1146/annurev.immunol.21.120601.141126
  16. Underhill, D. M. and A. Ozinsky. 2002. Phagocytosis of microbes: Complexity in action. Annu. Rev. Immunol. 20: 825-852 https://doi.org/10.1146/annurev.immunol.20.103001.114744