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The metabolic engineering of epothilones, as secondary
metabolites, was investigated using Sorangium cellulosum
to achieve the selective production of epothilone B, a potent
anticancer agent. Thus, the propionyl-CoA synthetase gene
(prpE) from Ralstonia solanacearum was heterologously
expressed in S. cellulosum to increase the production of
epothilone B. Propionyl-CoA synthetase converts propionate
into propionyl-CoA, a potent precursor of epothilone B.
The recombinant S. cellulosum containing the prpE gene
exhibited a significant increase in the resolution of epothilones
B/A, with an epothilone B to A ratio of 127 to 1, which was 100
times higher than that of the wild-type cells, demonstrating
its potential use for the selective production of epothilone B.
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Epothilones are polyketides produced as secondary metabolites
of Sorangium cellulosum [5). They are clinically attractive
as they have a cytotoxic effect on multiple-drug-resistant
cancer cell lines and are more soluble in water than taxol
[1, 7). Epothilones A (9) and B (10) (Fig. 1) are the major
fermentation products of S. cellulosum, whereas epothilones
C (7)and D (8) (Fig. 1) are intermediates in the biosynthetic
pathway of epothilones A and B, respectively [8,17].
Epothilones A and C are derived from malonyl-CoA (5)
and epothilones B and D are from methylmalonyl-CoA (6)
(Fig. 1) [3.4]. Since preliminary in vivo studies revealed
epothilone D to be the most promising of the four compounds
in terms of its potency as an antitumor drug [2], there 1s
considerable interest to increase the metabolic flux of
epothilones B and D rather than that of epothilones A and C.
Gerth and coworkers [4] demonstrated that the incorporation
of acetate (1) and propionate (2) units into the metabolic
pathway resulted in the formation of epothilones A and B,
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respectively (Fig. 1). In a previous study, we investigated
the effect of the initial sodium propionate concentration
on the production of epothilones, in an attempt to increase
the ratio of epothilone B to A [10], and the maximum
epothilone B to A ratio of 2.5 to 1 was obtained when
using wild-type cells and 20 mM of sodium propionate.
However, the sodium propionate severely inhibited cell
growth. Accordingly, this paper reports on the heterologous
expression of the propionyl-CoA synthetase (prpE) gene
from Ralstonia solanacearum in S. cellulosum and the
selective production of epothilone B using this strain. The
heterologous expression of various genes has already been
reported to increase the concentration of valuable metabolites
[9, 16], and propionyl-CoA synthetase (E.C. 6.2.1.17) converts
sodium propionate into propionyl-CoA, the precursor of
methylmalonyl-CoA [13].

The microorganism, S. cellulosum So ce90, was obtained
from DSMZ (German collection of microorganisms and
cell cultures, Germany). The E-medium [4] used in this
study contained the following (per liter): skim milk 4 g,
soy grits 4 g, potato starch 10 g, yeast extract 2 g, glycerol
43 ml, CaCL.-2H,0 I g, MgSO,-7H,0 1 g, HEPES 50 mmol,
and FeCl, 21 umol. The cells were cultivated in a 250-ml
Erlenmeyer flask containing 50 ml of the E-medium at
32°C and 220 rpm using a shaking incubator (Vision
Scientific Co., Ltd., Korea). For easy separation, the E-
medium also included 20 g/l XAD-16 resin (Rohm and
Haas Electronic Materials, Korea, Ltd.) to bind and stabilize
the epothilones [10-12].

The pET28a(+)-prpE vector system (Fig. 2) containing
the propionyl-CoA synthetase gene was kindly provided by
Dr. Eranna Rajashekhara (Marine Biotechnology Institute,
Japan) [ 13}, and specifically works on T7 RNA polymerase.
Isopropyl-B-b-thiogalactose (IPTG), the inducer of the
vector system, was replaced with lactose from skim milk,
one of the components of the E-medium. The recombinant
S. cellulosum was cultivated in 50 ml of the E-medium
containing 20 g/l XAD-16 resin, 50 mg/l kanamycin, and
20 mM sodium propionate.
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Fig. 1. Biosynthetic routes and structures of epothilones A-D.
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Acetate (1) is converted into acetyl-CoA (3) by acetyl-CoA carboxylase, whereas propionate (2) is converted into propionyl-CoA (4) by propionyl-CoA
synthase. Epothilone C (7) is derived from malonyl-CoA (5) and epothilone D (8) derived from methylmalonyl-CoA (6). Epothilones C and D are
intermediates in the biosynthetic pathway of epothilones A (9) and B (10), respectively.

The hydrophobic adsorber XAD-16 resins were separated
from the culture broth and washed three times with 50 ml
of deionized water. Epothilones A and B were then extracted
from the resin with methanol for 30 min and analyzed
using an HPLC system (Shimadzu, Japan) equipped with
two LC-10AD pumps and an SPD-10A UV-Vis detector.
Fifty ul of the methanol extract was injected across a 4x
10 mm guard column and 4.6x150 mm separation column
(Inertsil, ODS-3, GL Sciences Inc., Japan). The column
was then eluted with a mobile phase, consisting of 60%
acetonitrile and 40% water for 40 min at a flow rate of
1.0 ml/min, and the eluates monitored at 250 nm [14].

Rudd and Zusman [15] previously reported that Myxococcus
xanthus RNA polymerase was capable of transcribing
DNA from E. coli phages T7. Thus, it was anticipated that
the pET28a(+)-prpE vector system would also work in the
myxobacterium S. cellulosum [6). First, the pET28a(+)-
prpE vector was transformed into E. coli XL1-Blue, and then
the cells were cultivated. Thereafter, the vector isolated
from E. coli XL1-Blue was introduced into S. cellulosum
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Fig. 2. Schematic map of the pET28a(+)-prpE vector system.
pET28a(+)-prpE contains the prpE gene from Ralstonia solanacearum and
a kanamycin resistance site.

and a Southern blot analysis performed to confirm the
transformation. The Southern blot analysis revealed that
the recombinant S. cellulosum contained the pET28a(+)-
prpE vector (Fig. 3).

Fig. 4 shows that selective production of epothilone B
was realized by the S. cellulosum containing the pET28a(+)-
prpE vector. In the case of the wild-type cells, the concentration
of epothilones A and B was 0.36 and 0.43 mg/1, respectively,
indicating no resolution of epothilones A and B. However,
in the case of the recombinant cells harboring the pET28a(+)-
prpE vector, the concentration of epothilone B was 1.08 mg/l,
which was 127 times higher than that of epothilone A at
8.45x107° mg/l. Thus, the propionyl-CoA synthetase expressed
from the prpE gene of the recombinant S. cellulosum
accelerated the conversion of propionate into propionyl-
CoA, thereby increasing the metabolic flux of epothilone
B. Consequently, the epothilone B to A ratio of 127 to 1
obtained from the recombinant cells was 100 times higher
than that obtained from the wild-type cells at 1.2. The
total epothilone A and B concentration afforded by the
recombinant S. cellulosum at 1.088 mg/l was also higher
than that obtained from the wild-type cells at 0.79 mg/1.

In conclusion, the heterologous expression of the prpE
gene offers a distinct advantage in terms of the recovery and
purification of the desired product. Moreover, the feasibility
of producing epothilone B selectively opens the door to the

Fig. 3. Southern blot analysis of the prpE gene.

Plasmids pET28a(+)-prpE extracted from R. solanacearum (lane 1), E. coli
XL1-Blue (lanes 2, 3), and S. cellulosum So ¢e90 (lane 4) were digested
with Ndel and Sacl, electrophoresed on an agarose gel, and then transferred
to a nylon membrane and hybridized. The arrow indicates the prpE gene.
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Fig. 4. Selective production of epothilone B by recombinant S.
cellulosum harboring the pET28a(+)-prpE vector.

The wild-type cells produced almost equal amounts of epothilones A and
B, whereas the recombinant cells produced an epothilone B to A ratio of
12710 1.

regulation of secondary metabolites and a system design
for epothilone production.
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