References
- Agathos, S. N., J. W. Marshall, C. Moraiti, R. Parekh, and C. Madhosingh. 1986. Physiological and genetic factors for process development of cyclosporine fermentations. J. Ind. Microbiol. 1: 39-48 https://doi.org/10.1007/BF01569415
- Alfonso, C., L. Cribiero, and F. Reyes. 1989. Penicillin amidohydrolases in fungal autolysis. Microbiol. Immunol. 33: 69-74 https://doi.org/10.1111/j.1348-0421.1989.tb01498.x
- Balakrishnan, K. and A. Pandey. 1996. Influence of amino acids on the biosynthesis of cyclosporine A by Tolypocladium inflatum. Appl. Microbiol. Biotechnol. 45: 800-803 https://doi.org/10.1007/s002530050765
- Buchs, J. 2001. Introduction to advantages and problems of shaken cultures. J. Biochem. Eng. 7: 91-98 https://doi.org/10.1016/S1369-703X(00)00106-6
- Chun, G.-T. and S. N. Agathos. 1991. Comparative studies of physiological and environmental effects on the production of cyclosporine A in suspended and immobilized cells of Tolypocladium inflatum. Biotechnol. Bioeng. 37: 256-265 https://doi.org/10.1002/bit.260370308
- Dubois, M., K. Gilles, J. Hamilton, P. Rebers, and F. Smith. 1956. Colorimetric method of determination of sugars and related substances. Anal. Chem. 290: 181-186
- El Enshasy, H. 2007. Filamentous fungal cultures - process characteristics, products, and applications, pp. 225-261. In S. T. Yang (ed.), Bioprocessing for Value-added Products from Renewable Resources. Elsevier Press, The Netherlands
- Harvey, L. M., B. McNeil, D. R. Berry, and S. White. 1998. Autolysis in batch cultures of Penicillium chrysogenum at varying agitation rates. Enz. Microb. Technol. 22: 446-458 https://doi.org/10.1016/S0141-0229(97)00234-2
- Heydarian, S. M., M. D. Lilly, and A. P. Ison. 1996. The effect of culture conditions on the production of erythromycin by Saccharopolyspora erythraea in batch culture. Biotechnol. Lett. 18: 1181-1186 https://doi.org/10.1007/BF00128589
- Isaac, C. C., A. Jones, and M. A. Pickard. 1990. Production of cyclosporins by Tolypocladium niveum strains. Antimicrob. Agents Chemother. 34: 121-127 https://doi.org/10.1128/AAC.34.1.121
- Kreuzig, F. 1984. High speed liquid chromatography with conventional instruments for determination of cyclosporin A, B, C, and D in fermentation broth. J. Chromatogr. 290: 181-186 https://doi.org/10.1016/S0021-9673(01)93572-1
- Lee, J. and S. N. Agathos. 1991. Dynamic of L-valine in relation to the production of cyclosporine A by Tolypocladium inflatum. Appl. Microbiol. Biotechnol. 34: 513-517
- Lee, T. H., G.-K. Chun, and Y. K. Chang. 1997. Development of sporulation/immobilization method and its application for the continuous production of cyclosporine A by Tolypocladium inflatum. Biotechnol. Prog. 13: 546-550 https://doi.org/10.1021/bp970069j
- Maier, U. and J. Büchs. 2001. Characterisation of the gas-liquid mass transfer in shaking bioreactors. J. Biochem. Eng. 7: 99-106 https://doi.org/10.1016/S1369-703X(00)00107-8
- Martin, J. F. and A. L. Demain. 1980. Control of antibiotic biosynthesis. Microbiol. Rev. 44: 230-251
- Mayer, A. F. and W.-D. Deckwer. 1996. Simultaneous production and decomposition of clavulanic acid during Streptomyces clavuligerus cultivations. Appl. Microbiol. Biotechnol. 45: 41-46 https://doi.org/10.1007/s002530050646
- McIntyre, M., D. R. Berry, and B. McNeil. 2000. Role of protease in autolysis of Penicillium chrysogenum chemostat cultures in response to nutrient depletion. Appl. Microbiol. Biotechnol. 53: 235-242 https://doi.org/10.1007/s002530050014
- Murthy, M. V., E. V. Mohand, and A. K. Sadhukhan. 1999. Cyclosporin-A production by Tolypocladium inflatum using solid state fermentation. Process Biochem. 34: 269-280 https://doi.org/10.1016/S0032-9592(98)00095-8
- Papagianni, M. 2004. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol. Adv. 22: 189-259 https://doi.org/10.1016/j.biotechadv.2003.09.005
- Pritchard, D. I. 2005. Sourcing a chemical succession for cyclosporin from parasites and human pathogens. Drug Discovery Today 10: 688-691 https://doi.org/10.1016/S1359-6446(05)03395-7
- Schreiber, S. L. and G. R. Crabtree. 1992. The mechanism of action of cyclosporin A and FK506. Immunol. Today 13: 136-142 https://doi.org/10.1016/0167-5699(92)90111-J
- Sekar, C. and K. Balaraman. 1998. Immobilization of the fungus Tolypocladium sp. for the production of cyclosporin A. Bioprocess Eng. 19: 281-283
- Sekar, C. and K. Balaraman. 1998. Optimization studies on the production of cyclosporine A by solid state fermentation. Bioprocess Eng. 18: 293-296 https://doi.org/10.1007/s004490050444
- Sowden, J. M. and B. R. Allen. 1992. Cyclosporin in dermatology: A historical overview. Int. J. Dermatol. 31: 520-523 https://doi.org/10.1111/j.1365-4362.1992.tb02708.x
- Sugiyama, M., S. Mizuno, Y. Ohta, H. Mochizuki, and O. Nimi. 1990. Kinetic studies of streptomycin uptake implicated in selfresistance in a streptomycin producer. Biotechnol. Lett. 12: 1-6 https://doi.org/10.1007/BF01028483
- Szabo, I., A. Penyige, G. Barabas, and J. Barabas. 1990. Effect of aminoglycoside antibiotics on the autolytic enzyme of Streptomyces griseus. Arch. Microbiol. 155: 99-102 https://doi.org/10.1007/BF00291282
- Tamura, S., Y. Park, M. Toriyama, and M. Okabe. 1997. Change of mycelial morphology in tylosin production by batch culture of Streptomyces fradiae under various shear conditions. J. Ferment. Bioeng. 83: 523-528 https://doi.org/10.1016/S0922-338X(97)81131-2
- White, S., M. McIntyre, D. Berry, and B. McNeil. 2002. The autolysis of industrial filamentous fungi. Crit. Rev. Biotechnol. 22: 1-14 https://doi.org/10.1080/07388550290789432
- Wittler, R., H. Baumgartl, D. W. Lubbers, and K. Schügerl. 1986. Investigations of oxygen transfer into Penicillium chrysogenum pellets by microprobe measurement. Biotechnol. Bioeng. 28: 1024-1031 https://doi.org/10.1002/bit.260280713