Expression, Purification, Crystallization and Preliminary X-Ray Crystallographic Analysis of CnrX from Cupriavidus metallidurans CH34

  • Published : 2008.01.31

Abstract

The nickel and cobalt resistance of Cupriavidus metallidurans CH34 is mediated by the CnrCBA efflux pump encoded by the cnrYHXCBAT metal resistance determinant. The products of the three genes cnrYXH transcriptionally regulate expression of cnr. CnrY and CnrX are membrane-bound proteins, probably functioning as anti-sigma factors, whereas CnrH is a cnr-specific extracytoplasmic functions (ECF) sigma factor. The periplasmic domain of CnrX (residues 29-148) was cloned as a N-terminal His-tagged protein, expressed in Escherichia coli, and purified using affinity chromatography and gel filtration. The molecular mass was estimated to be about 13.6kDa by size exclusion chromatography, corresponding to a monomer. The tetragonal bipyramid crystals were obtained by mixing an equal volume of protein in 50mM Tris-HCl, pH 7.5, 1% glycerol, 100mM NaCl, 1mM DTT, and the reservoir solution of 15% w/v PEG 2000, 100mM lithium chloride at 277K in 2-4 days using hanging drop vapor diffusion. The protein concentration was 24mg/ml. The crystal that diffracted to $2.42{\AA}$ resolution belongs to space group $P4_1\;or\;P4_3$ with unit cell parameters of $a=b=32.14{\AA},\;c=195.31{\AA},\;{\alpha}={\beta}={\gamma}=90^{\circ}$, with one molecule of CnrX in the asymmetric unit.

Keywords

References

  1. Ahn, J.-H., M. S. Kim, M. C. Kim, J. S. Lim, G. T. Lee, J. K. Yun, T. S. Kim, T. S. Kim, and J. O. Ka. 2006. Analysis of bacterial diversity and community structure in forest soils contaminated with fuel hydrocarbon. J. Microbiol. Biotechnol. 16: 704-715
  2. Chen, P., B. Greenberg, S. Taghavi, C. Romano, D. van der Lelie, and C. He. 2005. A novel lead(II) regulatory protein in Ralstonia metallidurans: Development of a ratiometric fluorescent lead(II) sensor. Angewandte Chem. Int. Edit. 44: 2-6
  3. Corbisier, P., D. van der Lelie, B. Borremans, A. Provoost, V. de Lorenzo, N. L. Brown, J. R. Lloyd, J. L. Hobman, E. Csöregi, G. Johansson, and B. Mattiasson. 1999. Whole celland protein-based biosensors for the detection of bioavailable heavy metals in environmental samples. Anal. Chem. Acta 387: 235-244 https://doi.org/10.1016/S0003-2670(98)00725-9
  4. Diels, L., D. van der Lelie, S. Van Roy, A. Provoost, J. Gemoets, D. Springael, and L. Bastiaens. 2000. In situ and on site bioprecipitation of heavy metals from groundwater. In: Groundwater 2000/Berg P. L. [edit.], e.a., s.l
  5. Diels, L., D. van der Lelie, and L. Bastiaens. 2002. New developments in heavy metal contaminated soils. Rev. Env. Sci. Bio/Technol. 1: 75-82 https://doi.org/10.1023/A:1015188708612
  6. Dressler, C., U. Kües, D. H. Nies, and B. Friedrich. 1991. Determinants encoding multiple metal resistance in newly isolated copper-resistant bacteria. Appl. Environ. Microbiol. 57: 3079-3085
  7. Goris, J., P. De Vos, T. Coenye, B. Hoste, D. Janssens, H. Brim, L. Diels, M. Mergeay, K. Kerster, and P. Vandamme. 2001. Classification of metal-resistant bacteria from industrial biotopes as Ralstonia campinensis sp. nov., Ralstonia metallidurans sp. nov. and Ralstonia basilensis Steinle et al., 1998 emend. Int. J. Syst. Evol. Microbiol. 51: 1773-1782 https://doi.org/10.1099/00207713-51-5-1773
  8. Grass, G., C. Grobe, and D. H. Nies. 2000. Regulation of the cnr cobalt/nickel resistance determinant from Ralstonia sp. CH34. J. Bacteriol. 182: 1390-1398 https://doi.org/10.1128/JB.182.5.1390-1398.2000
  9. Grass, G., B. Fricke, and D. H. Nies. 2005. Control of expression of a periplasmic nickel efflux pump by periplasmic nickel concentrations. BioMetals 18: 437-448 https://doi.org/10.1007/s10534-005-3718-6
  10. Liesegang, H., K. Lemke, R. A. Siddiqui, and H. G. Schlegel. 1993. Characterization of the inducible nickel and cobalt resistance determinant cnr from pMOL28 of Alcaligenes eutrophus CH34. J. Bacteriol. 175: 767-778 https://doi.org/10.1128/jb.175.3.767-778.1993
  11. Lonetto, M. A., K. L. Brown, K. E. Rudd, and M. J. Buttner. 1994. Analysis of the Streptomyces coelicolor sigE gene reveals a new sub-family of eubacterial RNA polymerase factors involved in the regulation of extracytoplasmic functions. Proc. Natl. Acad. Sci. USA 91: 7573-7577
  12. Matthews, B. W. 1968. Solvent content of protein crystals. J. Mol. Biol. 33: 491-497 https://doi.org/10.1016/0022-2836(68)90205-2
  13. Mergeay, M., D. H. Nies, H. G. Schlegel, J. Gerits, P. Charles, and F. Van Gijsegem. 1985. Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J. Bacteriol. 162: 328-334
  14. Mergeay, M., S. Monchy, T. Vallaeys, V. Auquier, A. Benotmane, P. Bertin, S. Taghavi, J. Dunn, D. van der Lelie, and R. Wattiez. 2003. Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: Towards a catalogue of metal-responsive genes. FEMS Microbiol. Rev. 27: 385-410 https://doi.org/10.1016/S0168-6445(03)00045-7
  15. Missiakas, D. and S. Raina. 1998. The extracytoplasmic function sigma factors: Role and regulation. Mol. Microbiol. 28: 1059-1066 https://doi.org/10.1046/j.1365-2958.1998.00865.x
  16. Monchy, S., M. A. Benotmane, R. Wattiez, S. van Aelst, V. Auquier, B. Borremans, M. Mergeay, S. Taghavi, D. van der Lelie, and T. Vallaeys. 2006. Transcriptomic and proteomic analyses of the pMOL30-encoded copper resistance in Cupriavidus metallidurans strain CH34. Microbiology 152: 1765-1776 https://doi.org/10.1099/mic.0.28593-0
  17. Nies, D. H. 1995. The cobalt, zinc, and cadmium efflux system CzcABC from Alcaligenes eutrophus functions as a cationproton antiporter in Escherichia coli. J. Bacteriol. 177: 2707-2712 https://doi.org/10.1128/jb.177.10.2707-2712.1995
  18. Nies, D. H. 2003. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol. Rev. 27: 313-339 https://doi.org/10.1016/S0168-6445(03)00048-2
  19. Nies, D. H., A. Nies, L. Chu, and S. Silver. 1989. Expression and nucleotide sequence of a plasmid-determined divalent cation efflux system from Alcaligenes eutrophus. Proc. Natl. Acad. Sci. USA 86: 7351-7355
  20. Nies, D. H. 2000 Heavy metal-resistant bacteria as extemophiles: Molecular physiology and biotechnological use of Ralstonia sp. CH34. Extremophiles 4: 77-82 https://doi.org/10.1007/s007920050140
  21. Nies, D. H. 2004. Incidence and function of sigma factors in Ralstonia metallidurans and other bacteria. Arch. Microbiol. 181: 255-268 https://doi.org/10.1007/s00203-004-0658-4
  22. Noel-Georis, I., T. Vallaeys, R. Chauvaus, S. Moncy, P. Flamagne, M. Mergeay, and R. Wattiez. 2004. Global analysis of the Ralstonia metallidurans proteome: Prelude for the largescale study of heavy metal response. Proteomics 4: 151-179 https://doi.org/10.1002/pmic.200300551
  23. Otwinowski, Z. and W. Minor. 1997. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276: 307-326 https://doi.org/10.1016/S0076-6879(97)76066-X
  24. Schmidt, T. and H. G. Schlegel. 1994. Combined nickel-cobaltcadmium resistance encoded by the ncc locus of Alcaligenes xylosoxidans 31A. J. Bacteriol. 176: 7045-7054 https://doi.org/10.1128/jb.176.22.7045-7054.1994
  25. Tibazarwa, C., S. Wuertz, M. Mergeay, L. Wyns, and D. van der Lelie. 2000. Regulation of the cnr cobalt and nickel resistance determinant of Ralstonia eutropha (Alcaligenes eutrophus) CH34. J. Bacteriol. 182: 1399-1409 https://doi.org/10.1128/JB.182.5.1399-1409.2000