Molecular Diversity of Bacterial Communities from Subseafloor Rock Samples in a Deep-Water Production Basin in Brazil

  • Von Der Weid, Irene (Instituto de Microbiologia Prof. Paulo de Goes, UFRJ, CCS, Bloco I, Ilha do Fundao) ;
  • Korenblum, Elisa (Instituto de Microbiologia Prof. Paulo de Goes, UFRJ, CCS, Bloco I, Ilha do Fundao) ;
  • Jurelevicius, Diogo (Instituto de Microbiologia Prof. Paulo de Goes, UFRJ, CCS, Bloco I, Ilha do Fundao) ;
  • Rosado, Alexandre Soares (Instituto de Microbiologia Prof. Paulo de Goes, UFRJ, CCS, Bloco I, Ilha do Fundao) ;
  • Dino, Rodolfo (CENPES, PETROBRAS, Ilha do Fundao) ;
  • Sebastian, Gina Vasquez (CENPES, PETROBRAS, Ilha do Fundao) ;
  • Seldin, Lucy (Instituto de Microbiologia Prof. Paulo de Goes, UFRJ, CCS, Bloco I, Ilha do Fundao)
  • 발행 : 2008.01.31

초록

The deep subseafloor rock in oil reservoirs represents a unique environment in which a high oil contamination and a very low biomass can be observed. Sampling this environment has been a challenge owing to the techniques used for drilling and coring. In this study, the facilities developed by the Brazilian oil company PETROBRAS for accessing deep subsurface oil reservoirs were used to obtain rock samples at 2,822-2,828 m below the ocean floor surface from a virgin field located in the Atlantic Ocean, Rio de Janeiro. To address the bacterial diversity of these rock samples, PCR amplicons were obtained using the DNA from four core sections and universal primers for 16S rRNA and for APS reductase (aps) genes. Clone libraries were generated from these PCR fragments and 87 clones were sequenced. The phylogenetic analyses of the 16S rDNA clone libraries showed a wide distribution of types in the domain bacteria in the four core samples, and the majority of the clones were identified as belonging to Betaproteobacteria. The sulfate-reducing bacteria community could only be amplified by PCR in one sample, and all clones were identified as belonging to Gammaproteobacteria. For the first time, the bacterial community was assessed in such a deep subsurface environment.

키워드

참고문헌

  1. Amann, R. I., W. Ludwig, and K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143-169
  2. Andreoni, V., L. Cavalca, M. A. Rao, G. Nocerino, S. Bernasconi, E. Dell'Amico, M. Colombo, and L. Gianfreda. 2004. Bacterial communities and enzyme activities of PAHs polluted soils. Chemosphere 57: 401-412 https://doi.org/10.1016/j.chemosphere.2004.06.013
  3. Barton, H. A., N. M. Taylor, B. R. Lubbers, and A. C. Pemberton. 2006. DNA extraction from low-biomass carbonate rock: An improved method with reduced contamination and the low-biomass contaminant database. J. Microbiol. Methods 66: 21-31 https://doi.org/10.1016/j.mimet.2005.10.005
  4. Boivin-Jahns, V., R. Ruimy, A. Bianchi, S. Daumas, and R. Christen. 1996. Bacterial diversity in a deep-subsurface clay environment. Appl. Environ. Microbiol. 62: 3405-3412
  5. Cunha, C. D., A. S. Rosado, G. V. Sebastián, L. Seldin, and I. von der Weid. 2006. Oil biodegradation by Bacillus strains isolated from the rock of an oil reservoir located in a deepwater production basin in Brazil. Appl. Microbiol. Biotechnol. 73: 949-959 https://doi.org/10.1007/s00253-006-0531-2
  6. Da Silva, J. E. M., C. A. S. Paulo, A. G. Santos Filho, and E. J. J. Coelho. 2003. Subsea production system. Patent US5192167A
  7. D'Hondt, S. L., S. Rutherford, and A. J. Spivack. 2002. Metabolic activity of subsurface life in deep-sea sediments. Science 15: 2067-2070
  8. D'Hondt, S. L., B. B. Jorgensen, D. J. Miller, A. Batzke, R. Blake, B. A. Cragg, et al. 2004. Distributions of microbial activities in deep sub-seafloor sediments. Science 306: 2216-2221 https://doi.org/10.1126/science.1101155
  9. Egland, P. G., D. A. Pelletier, M. Dispensa, J. Gibson, and C. S. Harwood. 1997. A cluster of bacterial genes for anaerobic benzene ring biodegradation. Proc. Natl. Acad. Sci. USA 94: 6484-6489
  10. Fritsche, K., G. Auling, J. R. Andreesen, and U. Lechner. 1999. Defluvibacter lusatiae gen. nov., sp. nov., a new chlorophenoldegrading member of the alpha-2 subgroup of Proteobacteria. Syst. Appl. Microbiol. 22: 197-204 https://doi.org/10.1016/S0723-2020(99)80066-6
  11. Haldeman, D. L., P. S. Amy, D. Ringelberg, D. C. White, R. E. Garen, and W. C. Ghiorse. 1995. Microbial growth and resuscitation alter community structure after perturbation. FEMS Microbiol. Ecol. 17: 27-38 https://doi.org/10.1111/j.1574-6941.1995.tb00124.x
  12. Hess, A., B. Zarda, D. Hahn, A. Haner, D. Stax, P. Hohener, and J. Zeyer. 1997. In situ analysis of denitrifying tolueneand m-xylene-degrading bacteria in a diesel fuel-contaminated laboratory aquifer column. Appl. Environ. Microbiol. 63: 2136-2141
  13. Heuer, H. and K. Smalla. 1997. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) for studying soil microbial communities, pp. 353-370. In J. D. van Elsas, J. T. Trevors, and E. M. H. Wellington. (eds.), Modern Soil Microbiology. Marcel Dekker, Inc., New York
  14. Hurst, C. J., G. R. Knudsen, M. J. McInerney, L. D. Stetzenbach, and M. V. Walter. 1997. Manual of Environmental Microbiology. American Society for Microbiology
  15. Inagaki, F., T. Nunoura, S. Nakagawa, A. Teske, M. Lever, A. Lauer, M. Suzuki, K. Takai, M. Delwiche, F. S. Colwell, K. H. Nealson, K. Horikoshi, S. D'Hondt, and B. B. Jorgensen. 2006. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proc. Nat. Acad. Sci. USA 103: 2815-2820
  16. Katsivela, E., D. Bonse, A. Kruger, C. Strompl, A. Livingston, and R. M. Wittich. 1999. An extractive membrane biofilm reactor for degradation of 1,3-dichloropropene in industrial waste water. Appl. Microbiol. Biotechnol. 52: 853-862 https://doi.org/10.1007/s002530051603
  17. Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 5: 150-163 https://doi.org/10.1093/bib/5.2.150
  18. Lee, Y. J., I. D. Wagner, M. E. Brice, V. V. Kevbrin, G. L. Mills, C. S. Romanek, and J. Wiegel. 2005. Thermosediminibacter oceani gen. nov. sp. nov. & Thermosediminibacter litoriperuensis sp. nov., new anaerobic thermophilic bacteria isolated from Peru Margin. Extremophiles 9: 375-383 https://doi.org/10.1007/s00792-005-0453-4
  19. Lu, J., Y. Nogi, and H. Takami. 2001. Oceanobacillus iheyensis gen. nov., sp. nov., a deep-sea extremely halotolerant and alkaliphilic species isolated from a depth of 1,050 m on the Iheya Ridge. FEMS Microbiol. Lett. 205: 291-297 https://doi.org/10.1111/j.1574-6968.2001.tb10963.x
  20. Meyer, S., R. Moser, A. Neef, U. Stahl, and P. Kampfer. 1999. Differential detection of key enzymes of polyaromatichydrocarbon- degrading bacteria using PCR and gene probes. Microbiology 145: 1731-1741 https://doi.org/10.1099/13500872-145-7-1731
  21. Newberry, C. J., G. Webster, B. A. Cragg, R. J. Parkes, A. J. Weightman, and J. C. Fry. 2004. Diversity of prokaryotes and methanogenesis in deep subsurface sediments from the Nankai Trough, Ocean Drilling Program Leg 190. Environ. Microbiol. 6: 274-287 https://doi.org/10.1111/j.1462-2920.2004.00568.x
  22. Ogram, A., W. Sun, F. J. Brockman, and J. K. Fredrickson. 1995. Isolation and characterization of RNA from low-biomass deep-subsurface sediments. Appl. Environ. Microbiol. 61: 763-768
  23. Pace, N. R. 1997. A molecular view of microbial diversity and the biosphere. Science 276: 734-740 https://doi.org/10.1126/science.276.5313.734
  24. Parkes, R. J., B. A. Cragg, and P. Wellsburry. 2000. Recent studies on bacterial populations and processes in subseafloor sediments: A review. Hydrogeol. J. 8: 11-28 https://doi.org/10.1007/PL00010971
  25. Parkes, R. J., G. Webster, B. A. Cragg, A. J. Weightman, C. J. Newberry, T. G. Ferdelman, J. Kallmeyer, B. B. Jorgensen, I. W. Aiello, and J. C. Fry. 2005. Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature 436: 390-394 https://doi.org/10.1038/nature03796
  26. Pedersen, K., J. Arlinger, S. Ekendahl, and L. Hallbeck. 1996. 16S rRNA gene diversity of attached and unattached bacteria in boreholes along the access tunnel to the Aspo hard rock laboratory, Sweden. FEMS Microbiol. Ecol. 19: 249-262
  27. Pineda-Flores, G., G. Boll-Arguello, C. Lira-Galeana, and A. M. Mesta-Howard. 2004. A microbial consortium isolated from a crude oil sample that uses asphaltenes as a carbon and energy source. Biodegradation 15: 145-151
  28. Prince, R. C. 2005. The microbiology of marine oil spill bioremediation, pp. 317-336. In B. Ollivier and M. Magot (eds.), Petroleum Microbiology. ASM Press, Washington, D.C
  29. Ramana, C. V., C. Sasikala, K. Arunasri, P. Anil Kumar, T. N. Srinivas, S. Shivaji, P. Gupta, J. Suling, and J. F. Imhoff. 2006. Rubrivivax benzoatilyticus sp. nov., an aromatic, hydrocarbondegrading purple betaproteobacterium. Int. J. Syst. Evol. Microbiol. 56: 2157-2164 https://doi.org/10.1099/ijs.0.64209-0
  30. Ravenschlag, K., K. Sahm, J. Pernthaler, and R. Amann. 1999. High bacterial diversity in permanently cold marine sediments. Appl. Environ. Microbiol. 65: 3982-3989
  31. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
  32. Schippers, A., L. N. Neretin, J. Kallmeyer, T. G. Ferdelman, B. A. Cragg, R. J. Parkes, and B. B. Jorgensen. 2005. Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature 433: 861-864 https://doi.org/10.1038/nature03302
  33. Schippers, A. and L. N. Neretin. 2006. Quantification of microbial communities in near-surface and deeply buried marine sediments on the Peru continental margin using real-time PCR. Environ. Microbiol. 8: 1251-1260 https://doi.org/10.1111/j.1462-2920.2006.01019.x
  34. Smith, D., S. Alvey, and D. E. Crowley. 2005. Cooperative catabolic pathways within an atrazine-degrading enrichment culture isolated from soil. FEMS Microbiol. Ecol. 53: 265-273 https://doi.org/10.1016/j.femsec.2004.12.011
  35. Teske, A. P. 2005. The deep subsurface biosphere is alive and well. Trends Microbiol. 13: 402-404 https://doi.org/10.1016/j.tim.2005.07.004
  36. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882 https://doi.org/10.1093/nar/25.24.4876
  37. Toffin, L., G. Webster, A. J. Weightman, J. C. Fry, and D. Prieur. 2004. Molecular monitoring of culturable bacteria from deep-sea sediment of the Nankai Trough, Leg 190 Ocean Drilling Program. FEMS Microbiol. Ecol. 48: 357-367 https://doi.org/10.1016/j.femsec.2004.02.009
  38. Tsai, Y.-L. and B. H. Olson. 1992. Detection of low numbers of bacterial numbers in soils and sediments by polymerase chain reaction. Appl. Environ. Microbiol. 58: 754-757
  39. Van Waasbergen, L. G., D. L. Balkwill, F. H. Crocker, B. N. Bjornstad, and R. V. Miller. 2000. Genetic diversity among Arthrobacter species collected across a heterogeneous series of terrestrial deep-subsurface sediments as determined on the basis of 16S rRNA and recA gene sequences. Appl. Environ. Microbiol. 66: 3454-3463 https://doi.org/10.1128/AEM.66.8.3454-3463.2000
  40. Vrdoljak, G., W. S. Feil, H. Feil, J. C. Detter, and P. Fields. 2005. Characterization of a diesel sludge microbial consortia for bioremediation. Scanning 27: 8-14 https://doi.org/10.1002/sca.4950270103
  41. Wang, Y. P. and J. D. Gu. 2006. Degradability of dimethyl terephthalate by Variovorax paradoxus T4 and Sphingomonas yanoikuyae DOS01 isolated from deep-ocean sediments. Ecotoxicology 15: 549-557 https://doi.org/10.1007/s10646-006-0093-1
  42. Webster, G., C. J. Newberry, J. C. Fry, and A. J. Weightman. 2003. Assessment of bacterial community structure in the deep sub-seafloor biosphere by 16S rDNA-based techniques: A cautionary tale. J. Microbiol. Meth. 55: 155-164 https://doi.org/10.1016/S0167-7012(03)00140-4
  43. Wilson, I. G. 1997. Inhibition and facilitation of nucleic acid amplification. Appl. Environ. Microbiol. 63: 3741-3751
  44. Zinkevich, V. and I. B. Beech. 2000. Screening of sulfatereducing bacteria in colonoscopy samples from healthy and colitic human gut mucosa. FEMS Microbiol. Ecol. 34: 147-155 https://doi.org/10.1111/j.1574-6941.2000.tb00764.x