Acaricidal Activity and Function of Mite Indicator Using Plumbagin and Its Derivatives Isolated from Diospyros kaki Thunb. Roots (Ebenaceae)

  • Lee, Chi-Hoon (Faculty of Applied Biotechnology and Center for Agricultural Science and Technology, College of Agriculture and Life Science, Chonbuk National University) ;
  • Lee, Hoi-Seon (Faculty of Applied Biotechnology and Center for Agricultural Science and Technology, College of Agriculture and Life Science, Chonbuk National University)
  • Published : 2008.02.29

Abstract

Acaricidal effects of materials derived from Diospyros kaki roots against Dermatophagoides farinae and D. pteronyssinus were assessed using impregnated fabric disk bioassay and compared with that of the commercial benzyl benzoate. The observed responses varied according to dosage and mite species. The $LD_{50}$ values of the chloroform extract of Diospyros kaki roots were 1.66 and $0.96{\mu}g/cm^2$ against D. farinae and D. pteronyssinus. The chloroform extract of Diospyros kaki roots was approximately 15.2 more toxic than benzyl benzoate against D. farinae, and 7.6 times more toxic against D. pteronyssinus. Purification of the biologically active constituent from D. kaki roots was done by using silica gel chromatography and high-performance liquid chromatography. The structure of the acaricidal component was analyzed by GC-MS, $^1H-NMR,\;^{13}C-NMR,\;^1H-^{13}C$ COSY-NMR, and DEPT-NMR spectra, and identified as plumbagin. The acaricidal activity of plumbagin and its derivatives (naphthazarin, dichlon, 2,3-dibromo-1,4-naphthoquinone, and 2-bromo-1,4-naphthoquinone) was examined. On the basis of $LD_{50}$ values, the most toxic compound against D. farinae was naphthazarin $(0.011{\mu}g/cm^2)$ followed by plumbagin $(0.019{\mu}g/cm^2),$ 2-bromo-1,4-naphthoquinone $(0.079{\mu}g/cm^2)$, dichlon $(0.422{\mu}g/cm^2)$, and benzyl benzoate $(9.14{\mu}g/cm^2)$. Additionally, the skin color of the dust mites was changed from colorless-transparent to dark brown-black by the treatment of plumbagin. Similar results have been exhibited in its derivatives (naphthazarin, dichlon, and 2-bromo-1,4-naphthoquinone). In contrast, little or no discoloration was observed for benzyl benzoate. From this point of view, plumbagin and its derivatives can be very useful for the potential control agents, lead compounds, and indicator of house dust mites.

Keywords

References

  1. Cha, J. D., M. R. Jeong, S. I. Jeong, and K. Y. Lee. 2007. Antibacterial activity of sophoraflavanone G isolated from the roots of Sophora flavescens. J. Microbiol. Biotechnol. 17: 858-864
  2. Chen, G., H. Lu, C. Wang, K. Yamashita, M. Manabe, S. Xu, and H. Kodama. 2002. Effect of five triterpenoid compounds isolated from leaves of Diospyros kaki on stimulus-induced superoxide generation and tyrosyl phosphorylation in human polymorphonuclear leukocytes. Clin. Chim. Acta 320: 11-16 https://doi.org/10.1016/S0009-8981(02)00021-9
  3. Cho, J. H., B. K. Sung, M. Y. Lim, H. J. Kim, S. G. Lee, and H. S. Lee. 2004. Acaricidal components of medicinal plant oils against Dermatophagoides farinae and Dermatophagoides pteronyssinus. J. Microbiol. Biotechnol. 14: 631-634
  4. Cho, J. Y., G. J. Choi, S. W. Lee, K. S. Jang, H. K. Lim, C. H. Lim, S. O. Lee, K. Y. Cho, and J. C. Kim. 2006. Antifungal activity against Colletotrichum spp. of curcuminoids isolated from Curcuma longa L. Rhizomes. J. Microbiol. Biotechnol. 16: 280-285
  5. Choi, G. J., J. C. Kim, K. S. Jang, H. K. Lim, I. K. Park, S. C. Shin, and K. Y. Cho. 2006. In vivo antifungal activities of 67 plant fruit extracts against six plant pathogenic fungi. J. Microbiol. Biotechnol. 16: 491-495
  6. De Paiva, S. R., M. R. Figueiredo, T. V. Aragao, and M. A. Kaplan. 2003. Antimicrobial activity in vitro of plumbagin isolated from Plumbago species. Mem. Inst. Oswaldo Cruz 98: 959-961 https://doi.org/10.1590/S0074-02762003000700017
  7. Ganapaty, S., P. S. Thomas, S. Fotso, and H. Laatsch. 2004. Antitermitic quinones from Diospyros sylvatica. Phytochemistry 5: 1265-1271
  8. Gujar, G. T. 1990. Plumbagin, a naturally occurring naphthoquinone, its pharmacological and pesticidal activity. Fitoterapia 61: 387-394
  9. Hart, B. J., B. Guerin, and N. Nolard. 1992. In vitro evaluation of acaricidal and fungicidal activity of the house dust mite acaricide, Allerbiocid. Clin. Exp. Allergy 22: 923-928 https://doi.org/10.1111/j.1365-2222.1992.tb02065.x
  10. Helson, G. A. H. 1971. House-dust mites and possible connection with sudden infant death syndrome. N. Z. Med. J. 74: 209
  11. Hong, C. S. 1991. House dust mite and clinic allergy. J. Kor. Soc. Allergol. 11: 297-308
  12. Jaenson, T. F. T., K. Palsson, and A. K. Borg-Karlson. 2005. Evaluation of extracts and oils of tick-repellent plants from Sweden. Med. Vet. Entomol. 19: 345-352 https://doi.org/10.1111/j.1365-2915.2005.00578.x
  13. Jo, C., J. H. Son, M. G. Shin, and M. W. Byun. 2003. Irradiation effects on color and functional properties of persimmon (Diospyros kaki L. folium) leaf extract and licorice (Glycyrrhiza uralensis Fischer) root extract during storage. Radiat. Phys. Chem. 67: 143-148 https://doi.org/10.1016/S0969-806X(02)00443-7
  14. Kim, M. K., Y. M. Kim, and H. S. Lee. 2005. Growth-inhibiting effects of Juniperus virginiana leaf-extracted components toward human intestinal bacteria. Food. Sci. Biotechnol. 14: 164-167
  15. Kuk, J. H., S. J. Ma, J. H. Moon, K. Y. Kim, S. H. Choi, and K. H. Park. 2002. Antibacterial and antifungal activities of a naphthoquinone derivative isolated from the fruits of Catalpa ovata G. Don. J. Microbiol. Biotechnol. 12: 858-863
  16. Lajubutu, B. A., R. J. Pinney, M. F. Roberts, H. A. Odelola, and B. A. Oso. 1995. Antibacterial activity of diosquinone and plumbagin from the root of Diospyros mespiliformis (Hostch) (Ebenaceae). Phytother. Res. 9: 346-350 https://doi.org/10.1002/ptr.2650090508
  17. Lee, C. H. 2006. Morphologic changes and acaricidal activity of plumbagin and its congeners isolated from the root of Diospyros kaki Thunb. (Ebenaceae). MS Thesis, Chonbuk National University, Chonju, Republic of Korea
  18. Lee, C. H. and H. S. Lee. 2006. Color alteration and acaricidal activity of juglone isolated from Caesalpinia sappan heartwoods against Dermatophagoides spp. J. Microbiol. Biotechnol. 16: 1591-1596
  19. Lee, C. H., M. W. Kim, H. S. Kim, J. H. Ahn, Y. S. Yi, K. R. Kang, Y. D. Yoon, G. J. Choi, and K. Y. Cho. 2006. An antifungal property of Burkholderia ambifaria against phytopathogenic fungi. J. Microbiol. Biotechnol. 16: 465-468
  20. Lee, H. S. 2004. Acaricidal activity of constituents identified in Foeniculum vulgare fruit oil against Dermatophagoides spp. (Acari: Pyroglyphidae). J. Agric. Food Chem. 52: 2887-2889 https://doi.org/10.1021/jf049631t
  21. Lee, H. S. 2004. Antimite activity of cumin volatiles against Dermatophagoides farinae and Dermatophagoides pteronyssinus (Acari: Pyroglyphidae). J. Microbiol. Biotechnol. 14: 805-809
  22. Lee, S. P. and Y. S. Lee. 2002. Development of rapid molecular detection marker for Colletotrichum spp. in leaf and fruit tissues of sweet persimmon. J. Microbiol. Biotechnol. 12: 989-992
  23. Mallavadhani, U. V., A. K. Panda, and Y. R. Rao. 1998. Pharmacology and chemotaxonomy of Diospyros. Phytochemistry 49: 901-951 https://doi.org/10.1016/S0031-9422(97)01020-0
  24. Marshall, M. R., J. M. Kim, and C. I. Wei. 2000. Enzymatic browning in fruits, vegetables and seafoods. FAO
  25. Pollart, S. M., G. W. Ward, and T. A. E. Platts-Mills. 1987. House dust sensitivity and environmental control. Immunol. Allergy Clin. North Am. 7: 447-461
  26. Premakumari, P., K. Rathinam, and G. Santhakumari. 1977. Antifertility activity of plumbagin. Ind. J. Med. Res. 65: 829- 838
  27. Ryu, C. K., J. Y. Shim, M. J. Chae, I. H. Choi, J. Y. Han, O. J. Jung, J. Y. Lee, and S. H. Jeong. 2005. Synthesis and antifungal activity of 2/3-arylthio- and 2,3-bis(arylthio)-5-hydroxy-/5-methoxy- 1,4-naphthoquinones. Eur. J. Med. Chem. 40: 438-444 https://doi.org/10.1016/j.ejmech.2004.12.004
  28. AS Institute. 1990. SAS/STAT User's Guide, version 6; SAS Institute, Cary, NC, U.S.A
  29. Shigeki, J. and S. Norio. 2003. Benzoquinone, the substance essential for antibacterial activity in aqueous extracts from succulent young shoots of the pear Pyrus spp. Phytochemistry 62: 101-107 https://doi.org/10.1016/S0031-9422(02)00444-2
  30. Tandon, V. K., D. B. Yadav, R. V. Singh, M. Vaish, A. K. Chaturvedi, and P. K. Shukla. 2005. Synthesis and biological evaluation of novel 1,4-naphthoquinone derivatives as antibacterial and antiviral agents. Bioorg. Med. Chem. Lett. 15: 3463-3466 https://doi.org/10.1016/j.bmcl.2005.04.075
  31. Valentines, M. C., R. Vilaplana, R. Torres, J. Usall, and C. Larrigaudiere. 2005. Specific roles of enzymatic browning and lignification in apple disease resistance. Postharvest Biol.Technol. 36: 227-234 https://doi.org/10.1016/j.postharvbio.2005.01.002
  32. Waterman, P. G. and C. N. Mbi. 1979. The sterols and dimeric naphthoquinones of the barks of three West African Diospyros species. Planta Med. 37: 241-246 https://doi.org/10.1055/s-0028-1097334
  33. Weissenberg, M., J. Meisner, M. Klein, I. Schaeffler, M. Eliyahu, H. Schmutterer, and K. R. S. Ascher. 1997. Effect of substituent and ring changes in naturally occurring naphthoquinones on the feeding response of larvae of the Mexican bean beetle, Epilachna varivestis. J. Chem. Ecol. 23: 3-18 https://doi.org/10.1023/B:JOEC.0000006342.51040.90