Effects of Chaperones on mRNA Stability and Gene Expression in Escherichia coli

  • Yoon, Hyun-Jin (Department of Food and Animal Biotechnology, School of Agricultural Biotechnology, and Center for Agricultural Biomaterials, Seoul National University) ;
  • Hong, Ji-Young (Department of Food and Animal Biotechnology, School of Agricultural Biotechnology, and Center for Agricultural Biomaterials, Seoul National University) ;
  • Ryu, Sang-Ryeol (Department of Food and Animal Biotechnology, School of Agricultural Biotechnology, and Center for Agricultural Biomaterials, Seoul National University)
  • Published : 2008.02.29

Abstract

Effects of chaperones on mRNA stability and gene expression were studied in order to develop an efficient Escherichia coli expression system that can maximize gene expression. The stability of mRNA was modulated by introducing various secondary structures at the 5'-end of mRNA. Four vector systems providing different 5'-end structures were constructed, and genes encoding GFPuv and endoxylanase were cloned into the four vector systems. Primer extension assay revealed different mRNA half-lives depending on the 5'-end secondary structures of mRNA. In addition to the stem-loop structure at the 5'-end of mRNA, coexpression of dnaK-dnaJ-grpE or groEL-groES, representative heat-shock genes in E. coli, increased the mRNA stability and the level of gene expression further, even though the degree of stabilization was varied. Our work suggests that some of the heat-shock proteins can function as mRNA stabilizers as well s protein chaperones.

Keywords

References

  1. Balbas, P. and F. Bolivar. 1990. Design and construction of expression plasmid vectors in Escherichia coli. Methods Enzymol. 185: 14-37 https://doi.org/10.1016/0076-6879(90)85005-9
  2. Bechhofer, D. 1993. 5' mRNA stabilizers, pp. 31-52. In J. G. Belasco and G. Brawerman (eds.), Control of Messenger RNA Stability. Academic Press, San Diego, U.S.A
  3. Belasco, J. G., G. Nilsson, A. von Gabin, and S. N. Cohen. 1986. The stability of E. coli gene transcripts is dependent on determinants localized to specific mRNA segments. Cell 46: 245-251 https://doi.org/10.1016/0092-8674(86)90741-5
  4. Bouvet, P. and J. G. Belasco. 1992. Control of RNase Emediated RNA degradation by 5'-terminal base pairing in E. coli. Nature 360: 488-491 https://doi.org/10.1038/360488a0
  5. Carpousis, A. J. 2007. The RNA degradosome of Escherichia coli: A multiprotein mRNA-degrading machine assembled on RNase E. Annu. Rev. Microbiol. 61: 71-87 https://doi.org/10.1146/annurev.micro.61.080706.093440
  6. Carrier, T. A. and J. D. Keasling. 1997. Engineering mRNA stability in Escherichia coli by the addition of synthetic hairpins using a 5' cassette system. Biotechnol. Bioeng. 55: 577-580 https://doi.org/10.1002/(SICI)1097-0290(19970805)55:3<577::AID-BIT16>3.0.CO;2-D
  7. Carrier, T. A. and J. D. Keasling. 1999. Library of synthetic 5' secondary structure to manipulate mRNA stability in Escherichia coli. Biotechnol. Prog. 15: 58-64 https://doi.org/10.1021/bp9801143
  8. Das, A. 1990. Overproduction of proteins in Escherichia coli: Vectors, hosts, and strategies. Methods Enzymol. 182: 93-112 https://doi.org/10.1016/0076-6879(90)82011-P
  9. de Smit, M. H. and J. van Duin. 1994. Control of translation by mRNA secondary structure in Escherichia coli. A quantitative analysis of literature data. J. Mol. Biol. 244: 144-150 https://doi.org/10.1006/jmbi.1994.1714
  10. Duffaud, G. D., P. E. March, and M. Inouye. 1987. Expression and secretion of foreign proteins in Escherichia coli. Methods Enzymol. 153: 492-507 https://doi.org/10.1016/0076-6879(87)53074-9
  11. Ehretsmann, C. P., A. J. Carpousis, and H. M. Krisch. 1992. mRNA degradation in prokaryotes. FASEB J. 6: 3186-3192 https://doi.org/10.1096/fasebj.6.13.1397840
  12. Emory, S. A. and J. G. Belasco. 1990. The ompA 5' untranslated RNA segment functions in E. coli as a growth-rate-regulated mRNA stabilizer whose activity is unrelated to translational efficiency. J. Bacteriol. 172: 4472-4481 https://doi.org/10.1128/jb.172.8.4472-4481.1990
  13. Emory, S. A., P. Bouvet, and J. G. Belasco. 1992. A 5'-terminal stem-loop structure can stabilize mRNA in Escherichia coli. Genes Dev. 10: 310-315
  14. Georgellis, D., B. Sohlberg, F. U. Hartl, and A. von Gabin. 1995. Identification of GroEL as a constitutive of an mRNAprotection complex in Escherichia coli. Mol. Microbiol. 16: 1259-1268 https://doi.org/10.1111/j.1365-2958.1995.tb02347.x
  15. Georgiou, D. and P. Valax. 1996. Expression of correctly folded proteins in Escherichia coli. Curr. Opin. Biotechnol. 7: 190-197 https://doi.org/10.1016/S0958-1669(96)80012-7
  16. Gold, L. 1988. Posttranscriptional regulatory mechanisms in Escherichia coli. Annu. Rev. Biochem. 57: 199-233 https://doi.org/10.1146/annurev.bi.57.070188.001215
  17. Gold, L. 1990. Expression of heterologous proteins in Escherichia coli. Methods Enzymol. 185: 89-93 https://doi.org/10.1016/0076-6879(90)85009-D
  18. Goldstein, M. A. and R. H. Doi. 1995. Prokaryotic promoters in biotechnology. Biotechnol. Annu. Rev. 1: 105-128 https://doi.org/10.1016/S1387-2656(08)70049-8
  19. Guzman, L. M., D. Belin, M. J. Carson, and J. Beckwith. 1995. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177: 4121-4130 https://doi.org/10.1128/jb.177.14.4121-4130.1995
  20. Hansen, M. J., L. H. Chen, M. L. Fejzo, and J. G. Belasco. 1994. The ompA 5' untranslated region impedes a major pathway for mRNA degradation in E. coli. Mol. Microbiol. 12: 707-716 https://doi.org/10.1111/j.1365-2958.1994.tb01058.x
  21. Higgins, C. F., H. C. Causton, G. S. C. Dance, and E. A. Mudd. 1993. The role of the 3' end in mRNA stability and decay, pp. 13-30. In J. C. Belasco and G. Brawerman (eds.), Control of Messenger RNA Stability. Academic Press, San Diego, U.S.A
  22. Jeong, K. J., P. C. Lee, I. Y. Park, M. S. Kim, and S. C. Kim. 1998. Molecular cloning and characterization of an endoxylanase gene of Bacillus sp. in Escherichia coli. Enzyme Microb. Technol. 15: 599-605
  23. Jeong, E., K. Park, S. Yi, H. Kang, S. Chung, C. Lee, J. Chung, D. Seol, B. Cuhng, and M. Kim. 2007. Stress-governed expression and purification of human type II hexokinase in Escherichia coli. J. Microbiol. Biotechnol. 17: 638-643
  24. Koo, T. and T. Park. 2007. Expression of recombinant human growth hormone in a soluble form in Escherichia coli by slowing down the protein synthesis rate. J. Microbiol. Biotechnol. 17: 579-585
  25. Kushner, S. R. 2002. mRNA decay in Escherichia coli comes of age. J. Bacteriol. 184: 4658-4665 https://doi.org/10.1128/JB.184.17.4658-4665.2002
  26. Langer, T., G. Pfeifer, J. Martin, W. Baumeister, and F. U. Hartl. 1992. Chaperonin-mediated protein folding: GroES binds to one end of the GroEL cylinder, which accommodates the protein substrate within its central cavity. EMBO J. 11: 4757-4765
  27. Makrides, S. C. 1996. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol. Rev. 60: 512-538
  28. Marino, M. H. 1989. Expression system for heterologous protein production. BioPharm 2: 18-33
  29. Matzura, O. and A. Wennborg. 1996. RNAdraw: An integrated program for RNA secondary structure calculation and analysis under 32-bit Microsoft Windows. Comput. Appl. Biosci. 12: 247-249
  30. McLaren, R. S., S. F. Newbury, G. S. Dance, H. C. Causton, and C. F. Higgins. 1991. mRNA degradation by processive 3'-5' exoribonucleases in vitro and the implications for prokaryotic mRNA decay in vivo. J. Mol. Biol. 221: 81-95
  31. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428
  32. Nishihara, K. and T. Yura. 1998. Chaperone coexpression plasmids: Differential and synergistic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Escherichia coli. Appl. Environ. Microbiol. 64: 1694-1699
  33. Olins, P. O. and S. C. Lee. 1993. Recent advances in heterologous gene expression in Escherichia coli. Curr. Opin. Biotechnol. 4: 520-525 https://doi.org/10.1016/0958-1669(93)90071-4
  34. Park, N., J. Cha, D. Kim, and C. Park. 2007. Enzymatic characterization and substrate specificity of thermostable $\beta- glycosidase $ from hyperthermophilic archaea, Sulfolobus shibatae, expressed in E. coli. J. Microbiol. Biotechnol. 17: 454-460
  35. Ross, J. 1995. mRNA stability in mammalian cells. Microbiol. Rev. 59: 423-450
  36. Ryu, S. and S. Garges. 1994. Promoter switch in the Escherichia coli pts operon. J. Biol. Chem. 269: 4769-4772
  37. Seo, J., J. An, M. Baik, C. Park, J. Cheong, T. Moon, K. Park, Y. Choi, and C. Kim. 2007. Molecular cloning and characterization of trehalose biosynthesis genes from hyperthermophilic Archaebacterium Metallosphaera hakonensis. J. Microbiol. Biotechnol. 17: 123-129
  38. Yansura, D. G. and D. J. Henner. 1990. Use of Escherichia coli trp promoter for direct expression of proteins. Methods Enzymol. 185: 54-60 https://doi.org/10.1016/0076-6879(90)85007-B