Molecular Analysis of Bacterial Community Structures in Paddy Soils for Environmental Risk Assessment with Two Varieties of Genetically Modified Rice, Iksan 483 and Milyang 204

  • Kim, Min-Cheol (Department of Agricultural Biotechnology, Seoul National University) ;
  • Ahn, Jae-Hyung (Department of Agricultural Biotechnology, Seoul National University) ;
  • Shin, Hye-Chul (Department of Agricultural Biotechnology, Seoul National University) ;
  • Kim, Tae-Sung (Environmental Biosafety Division, Nature and Ecology Research Department, National Institute of Environmental Research) ;
  • Ryu, Tae-Hun (Genetic Resources Division, National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Kim, Dong-Hern (Genetic Resources Division, National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Song, Hong-Gyu (Division of Biological Sciences, Kangwon National University) ;
  • Lee, Geon-Hyoung (Department of Biology, Kunsan National University) ;
  • Ka, Jong-Ok (Department of Agricultural Biotechnology, Seoul National University)
  • Published : 2008.02.29

Abstract

The impacts of planted transgenic rice varieties on bacterial communities in paddy soils were monitored using both cultivation and molecular methods. The rice field plot consisted of eighteen subplots planted with two genetically modified (GM) rice and four non-GM rice plants in three replicates. Analysis with denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA genes revealed that the bacterial community structures were quite similar to each other in a given month, suggesting that there were no significant differences in bacterial communities between GM and non-GM rice soils. The bacterial community structures appeared to be generally stable with the seasons, as shown by a slight variation of microbial population levels and DGGE banding patterns over the year. Comparison analysis of 16S rDNA clone libraries constructed from soil bacterial DNA showed that there were no significant differences between GM and non-GM soil libraries but revealed seasonal differences of phyla distribution between August and December. The composition profile of phospholipid fatty acids (PLFA) between GM and non-GM soils also was not significantly different to each other. When soil DNAs were analyzed with PCR by using primers for the bar gene, which was introduced into GM rice, positive DNA bands were found in October and December soils. However, no bar gene sequence was detected in PCR analysis with DNAs extracted from both cultured and uncultured soil bacterial fractions. The result of this study suggested that, in spite of seasonal variations of bacterial communities and persistence of the bar gene, the bacterial communities of the experimental rice field were not significantly affected by cultivation of GM rice varieties.

Keywords

References

  1. Ahn, J. H., M. C. Kim, H. C. Shin, M. K. Choi, S. S. Yoon, T. S. Kim, H. G. Song, G. H. Lee, and J. O. Ka. 2006. Improvement of PCR amplification bias for community structure analysis of soil bacteria by denaturing gradient gel electrophoresis. J. Microbiol. Biotechnol. 16: 1561-1569
  2. Ashelford, K. E., N. Chuzhanova, J. C. Fry, A. J. Jones, and A. J. Weightman. 2006. New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. Appl. Environ. Microbiol. 72: 5734-5741 https://doi.org/10.1128/AEM.00556-06
  3. Bossio, D. A. and K. M. Scow. 1998. Impacts of carbon and flooding on soil microbial communities: Phospholipid fatty acid profiles and substrate utilization patterns. Microb. Ecol. 35: 265-278 https://doi.org/10.1007/s002489900082
  4. Castaldini, M., A. Turrini, C. Sbrana, A. Benedetti, M. Marchionni, S. Mocali, A. Fabiani, S. Landi, F. Santomassimo, B. Pietrangeli, M. P. Nuti, N. Miclaus, and M. Giovannetti. 2005. Impact of Bt corn on rhizhospheric and soil eubacterial communities and on beneficial mycorrhizal symbiosis in experimental microcosms. Appl. Envir. Microbiol. 71: 6719-6729 https://doi.org/10.1128/AEM.71.11.6719-6729.2005
  5. Courtois, S., A. Frostegard, G. Pernilla, G. Depret, P. Jeannin, and P. Simonet. 2001. Quantification of bacterial subgroups in soil: Comparison of DNA extracted directly from soil or from cells previously released by density gradient centrifugation. Environ. Microbiol. 3: 431-439 https://doi.org/10.1046/j.1462-2920.2001.00208.x
  6. de Vries, J., M. Heine, K. Harms, and W. Wackernagel. 2003. Spread of recombinant DNA by roots and pollen of transgenic potato plants, identified by highly specific biomonitoring using natural transformation of an Acinetobacter sp. Appl. Envir. Microbiol. 69: 4455-4462 https://doi.org/10.1128/AEM.69.8.4455-4462.2003
  7. Donegan, K. K., C. J. Palm, V. J. Fieland, L. A. Porteous, L. M. Ganio, D. L. Schaller, L. Q. Bucao, and R. J. Seidler. 1995. Changes in levels, species and DNA fingerprints of soil microorganisms associated with cotton expressing the Bacillus thuringiensis var. kurstaki endotoxin. Appl. Soil Ecol. 2: 111-124 https://doi.org/10.1016/0929-1393(94)00043-7
  8. Dunfield, K. E. and J. J. Germida. 2001. Diversity of bacterial communities in the rhizosphere and root interior of field-grown genetically modified Brassica napus. FEMS Microbiol. Ecol. 38: 1-9 https://doi.org/10.1111/j.1574-6941.2001.tb00876.x
  9. Dunfield, K. E. and J. J. Germida. 2003. Seasonal changes in the rhizosphere microbial communities associated with fieldgrown genetically modified canola (Brassica napus). Appl. Environ. Microbiol. 69: 7310-7318 https://doi.org/10.1128/AEM.69.12.7310-7318.2003
  10. Felsenstein, J. 2004. PHYLIP (Phylogenetic Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle
  11. Ferris, M. J., G. Muyzer, and D. M. Ward. 1996. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl. Environ. Microbiol. 62: 340-346
  12. Gebhard, F. and K. Smalla. 1998. Transformation of Acinetobacter sp. strain BD413 by transgenic sugar beet DNA. Appl. Environ. Microbiol. 64: 1550-1554
  13. Gyamfi, S., U. Pfeifer, M. Stierschneider, and A. Sessitisch. 2002. Effects of transgenic glufosinate-tolerant oilseed rape (Brassica napus) and the associated herbicide application on eubacterial and Pseudomonas communities in the rhizosphere. FEMS Microbiol. Ecol. 41: 181-190 https://doi.org/10.1111/j.1574-6941.2002.tb00979.x
  14. Hengstmann, U., K.-J. Chin, P. H. Janssen, and W. Liesack. 1999. Comparative phylogenetic assignment of environmental sequences of genes encoding 16S rRNA and numerically abundant culturable bacteria from an anoxic rice paddy soil. Appl. Environ. Microbiol. 65: 5050-5058
  15. James, C. 2006. Global status of commercialized biotech/GM crops: 2006. ISAAA Briefs No. 35, Ithaka, NY
  16. Kim, M. S., J. H. Ahn, M. K. Jung, J. H. Yu, D. H. Joo, M. C. Kim, H. C. Shin, T. S. Kim, T. H. Ryu, S. J. Kweon, T. S. Kim, D. H. Kim, and J. O. Ka. 2005. Molecular and cultivation-based characterization of bacterial community structure in rice field soil. J. Microbiol. Biotechnol. 15: 1087-1093
  17. Kim, T. S., M. S. Kim, M. K. Jung, M. J. Joe, J. H. Ahn, K. H. Oh, M. H. Lee, M. K. Kim, and J. O. Ka. 2005. Analysis of plasmid pJP4 horizontal transfer and its impact on bacterial community structure in natural soil. J. Microbiol. Biotechnol. 15: 376-383
  18. Kim, Y. T., S. E. Kim, K. D. Park, T. H. Kang, Y. M. Lee, S. H. Lee, J. S. Moon, and S. U. Kim. 2005. Investigation of possible horizontal gene transfer from the leaf tissue of transgenic potato to soil bacteria. J. Microbiol. Biotechnol. 15: 1130-1134
  19. Kowalchuk, G. A., M. Bruinsma, and J. A. van Veen. 2003. Assessing responses of soil microorganisms to GM plants. Trends Ecol. Evol.18: 403-410 https://doi.org/10.1016/S0169-5347(03)00187-3
  20. Lane, D. J. 1991. 16S/23S rRNA sequencing, pp. 115-148. In E. Stackebrandt and M. Goodfellow (eds.), Nucleic Acid Techniques in Bacterial Systematics. John Wiley and Sons, Chichester, England
  21. Liesack, W., S. Schnell, and N. P. Revsbech. 2000. Microbiology of flooded rice paddies. FEMS Microbiol. Rev. 24: 625-645 https://doi.org/10.1111/j.1574-6976.2000.tb00563.x
  22. Limdahl, V. 1996. Improved soil dispersion procedures for total bacterial counts, extraction of indigenous bacteria and cell survival. J. Microbiol. Methods 25: 279-286 https://doi.org/10.1016/0167-7012(95)00102-6
  23. Liu, B., Q. Zeng, F. Yan, H. Xu, and C. Xu. 2005. Effects of transgenic plants on soil microorganisms. Plant Soil 271: 1-13 https://doi.org/10.1007/s11104-004-1610-8
  24. Nielsen, K. M., A. M. Bones, K. Smalla, and van J. D. Elsas. 1998. Horizontal gene transfer from transgenic plants to terrestrial bacteria - A rare event? FEMS Micobiol. Rev. 22: 79-103 https://doi.org/10.1111/j.1574-6968.1984.tb00700.x
  25. Przetakiewicz, A., A. Karas, W. Orczyk, and A. Nadolska-Orzyk. 2004. Agrobacterium-mediated transformation of polyploidy cereals. The efficiency of selection and transgene expression in wheat. Cell. Mol. Biol. Lett. 9: 903-917
  26. Roche Diagnostics GmbH. 1999. PCR Application Manual, 2nd Ed. Germany
  27. Rogers, S. O. and A. J. Bendich. 1985. Extraction of DNA milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol. Biol. 5: 69-76 https://doi.org/10.1007/BF00020088
  28. Romanoski, G., M. G. Lorenz, G. Sayler, and W. Wackernagel. 1992. Persistence of free plasmid DNA in soil monitored by various methods including a transformation assay. Appl. Environ. Microbiol. 58: 3012-3019
  29. Saxena, D. and G. Stotzky. 2001. Bacillus thuringiensis (Bt) toxin released from root exudates and biomass of Bt corn has no apparent effect on earthworms, nematodes, protozoa, bacteria, and fungi in soil. Soil Biol. Biochem. 33: 1225-1230 https://doi.org/10.1016/S0038-0717(01)00027-X
  30. Schloss, P. D., B. R. Larget, and J. Handelsman. 2004. Integration of microbial ecology and statistics: A test to compare gene libraries. Appl. Environ. Microbiol. 70: 5485-5492 https://doi.org/10.1128/AEM.70.9.5485-5492.2004
  31. Schloss, P. D. and J. Handelsman. 2005. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl. Environ. Microbiol. 71: 1501- 1506 https://doi.org/10.1128/AEM.71.3.1501-1506.2005
  32. Schloss, P. D. and J. Handelsman. 2006. Introducing TreeClimber, a test to compare microbial community structures. Appl. Environ. Microbiol. 72: 2379-2384 https://doi.org/10.1128/AEM.72.4.2379-2384.2006
  33. Schmalenberger, A. and C. C. Tebbe. 2002. Bacterial community composition in the rhizosphere of a transgenic, herbicideresistant maize (Zea mays) and comparison to its non-transgenic cultivar Bosphore. FEMS Microbiol. Ecol. 40: 29-37 https://doi.org/10.1111/j.1574-6941.2002.tb00933.x
  34. Schmalenberger, A. and C. C. Tebbe. 2003. Genetic profiling of non-cultivated bacteria from the rhizospheres of sugar beet (Beta vulgaris) reveal field and annual variability but no effect of a transgenic herbicide resistance. Can. J. Microbiol. 49: 1-8 https://doi.org/10.1139/w02-111
  35. Sessitsch, A., S. Gyamfi, D. Tscherko, M. H. Gerzabek, and E. Kandeler. 2004. Activity of microorganisms in the rhizosphere of herbicide treated and untreated transgenic glufosinate-tolerant and wildtype oilseed rape grown in containment. Plant Soil 266: 105-116 https://doi.org/10.1007/s11104-005-7077-4
  36. Shen, R. F., H. Cai, and W. H. Gong. 2006. Transgenic Bt cotton has no apparent effect on enzymatic activities or functional diversity of microbial communities in rhizosphere soil. Plant Soil 285: 149-159 https://doi.org/10.1007/s11104-006-9000-z
  37. Sikorski, J., S. Graupner, M. G. Lorenz, and W. Wackernagel. 1998. Natural genetic transformation of Pseudomonas stutzeri in a non-sterile soil. Microbiology 144: 569-576 https://doi.org/10.1099/00221287-144-2-569
  38. Smalla, K., G. Wieland, A. Buchner, A. Xock, J. Parzy, S. Kaiser, N. Roskot, H. Heuer, and G. Berg. 2001. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: Plant-dependent enrichment and seasonal shifts revealed. Appl. Environ. Microbiol. 67: 4742- 4751 https://doi.org/10.1128/AEM.67.10.4742-4751.2001
  39. Susuki, M. T. and S. J. Giovannoni. 1996. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 62: 625-630
  40. Tebbe, C. C. and W. Vahjen. 1993. Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and yeast. Appl. Environ. Microbiol. 59: 2657-2665
  41. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The ClustalX windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882 https://doi.org/10.1093/nar/25.24.4876
  42. Thompson, C. J., N. R. Mowa, R. Tizard, R. Crameri, J. E. Davies, M. Lauwereys, and J. Botterman. 1987. Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J. 6: 2519-2523
  43. Weaver, R. W., J. S. Angle, and P. S. Bottomley. 1999. Methods of Soil Analysis: Part 2 - Microbiological and Biochemical Properties. Soil Science Society of America, Madison, U.S.A
  44. Widmer, F., R. J. Seidler, and L. S. Watrud. 1996. Sensitive detection of transgenic plant marker gene persistence in soil microcosms. Mol. Ecol. 5: 603-613 https://doi.org/10.1111/j.1365-294X.1996.tb00356.x
  45. Wohllenben, W., R. Alijah, J. Dorendorf, D. Hillemann, B. Nussbaumer, and S. Pelzer. 1992. Identification and characterization of phosphinothricin-tripeptide biosynthetic genes in Streptomyces viridochromogenes. Gene 115: 127-132 https://doi.org/10.1016/0378-1119(92)90550-9
  46. Wu, W. X., Z. F. Ye, H. Min, X. J. Duan, and W. M. Jin. 2004. Bt-transgenic rice straw affects the culturable microbiota and dehydrogenase and phophatase activities in a flooded paddy soil. Soil Biol. Biochem. 36: 289-295 https://doi.org/10.1016/j.soilbio.2003.09.014