Optimization of PS-7 Production Process by Azotobacter indicus var. myxogenes L3 Using the Control of Carbon Source Composition

탄소원 조성 조절을 이용한 Azotobacter indicus var. myxogenes L3로부터 PS-7 생산 최적화

  • Ra, Chae-Hun (Department of Biotechnology, Pukyong National University) ;
  • Kim, Ki-Myong (School of Life Sciences and Biotechnology, Korea University) ;
  • Hoe, Pil-Woo (Trade & Investment Promotiion Team, Busan Metropolitan City) ;
  • Lee, Sung-Jae (Department of Biotechnology, Pukyong National University) ;
  • Kim, Sung-Koo (Department of Biotechnology, Pukyong National University)
  • Published : 2008.03.28

Abstract

The proteins in whey are separated and used as food additives. The remains (mainly lactose) are spray-dried to produce sweet whey powder, which is widely used as an additive for animal feed. Sweet whey powder is also used as a carbon source for the production of valuable products such as polysaccharides. Glucose, fructose, galactose, and sucrose as asupplemental carbon source were evaluated for the production of PS-7 from Azotobacter indicus var. myxogenes L3 grown on whey based MSM media. Productions of PS-7 with 2% (w/v) fructose and sucrose were 2.05 and 2.31g/L, respectively. The highest production of PS-7 was 2.82g/L when 2% (w/v) glucose was used as the carbon source. Galactose showed low production of PS-7 among the carbon sources tested. The effects of various carbon sources addition to whey based MSM medium showed that glucose could be the best candidate for the enhancement of PS-7 production using whey based MSM medium. To evaluate the effect of glucose addition to whey based media on PS-7 production, fermentations with whey and glucose mixture (whey 1, 2, 3%; whey 1% + glucose 1%, whey 1% + glucose 2% and glucose 2%, w/v) were carried out. Significant enhancement of PS-7 production with addition of 1% (w/v) and 2% (w/v) glucose in 1% (w/v) whey media was observed. The PS-7 concentration of 2% glucose added whey lactose based medium was higher than that of 1% glucose addition, however, the product yield $Y_{p/s}$ was higher in 1% glucose added whey lactose based MSM medium. Therefore, the optimal condition for the PS-7 production from the Azotobacter indicus var.myxogenes L3, was 1% glucose addition to 1% whey lactose MSM medium.

Flask 배양으로 기본 유청 배지MSM를 배지로 하고 첨가한 각 탄소원의 PS-7생산 효과를 살펴보면 fructose, glucose와 sucrose의 첨가가 PS-7의 생산을 다른 당에 비해 향상시킴을 알 수 있었다. 그러나 galactose의 경우 첨가량이 증가될수록 오히려 PS-7의 생산량이 감소되는 경향을 나타내었다. 여러 가지 배양 변수를 고려한 결과 glucose씨 첨가가 최적임을 확인하였다. 5L 발효조에 의한 PS-7 생산의 경우 유청과 glucose를 함께 첨가한 것이 유청과 glucose만을 배지의 탄소원으로 사용했을 때 보다 PS-7의 생산량이 월등히 향상되는 것을 알 수 있었으며, 유청 1%와 glucose 1%배지의 경우 PS-7생산량이 3 g/L를 생산하였다. 유청 1%와 glucose 2%배지의 경우 4 g/L의 PS-7의 생산하였으나 잔당량이 $30{\sim}40%$가 남아 생산효율(yield)면에서는 떨어짐을 알 수 있었다. 배지내 Glucose농도 변화에 따른 점성(viscosity)의 변화는 PS-7의 생산량의 변화와 비슷한 패턴을 보이지만 분자량 증대에 따른 점도의 증가는 훨씬 높게 나타났다. 본 실험의 결과 일반적으로 C/N ratio가 다당류인 PS-7생산에 중요한 역할을 하고 있으며, 유청 1%+glucose 1% 배지를 사용할 때 높은 점도와 수율의 PS-7을 얻을 수 있는 최적 배지임을 알 수 있었다.

Keywords

References

  1. Dlamini, A. M. and P. S. Peiris. 1997. Production of high viscosity whey broths by lactose utilizing Xanthomonas campestris strain. Appl. Environ. Microbiol. 50: 1483-1485
  2. Dubois, M., Ka. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356 https://doi.org/10.1021/ac60111a017
  3. Falk, C., P. E. Jansson, M. Rinaudo, A. Heyrad, G. Widmalm, and P. Hebbar: 1996. Structural studies of the exocellular polysaccharide from Sphingomonas aucimobilis strain I-886. Carbohydr. Res. 285: 69-79 https://doi.org/10.1016/S0008-6215(96)90172-X
  4. Gulin, S., A. Kussak, P. E. Jansson, and G. Widmalm. 2001. Structural studies of S-7, another exocellular polysaccharide containing 2-deoxy-arbino-hexuronic acid. Carbohydr. Res. 311: 285-290
  5. Jurgen, O. 2000. Respiratory protection of nitrogenase in Azotobacter species: is a widely held hypothesis unequivocally supported by experimental evidence. FEMS Microbiol. Rev. 24: 321-333 https://doi.org/10.1111/j.1574-6976.2000.tb00545.x
  6. Lee, J. W., W. G. Yeomans, A. L. Allen, R. A. Gross, and D. L. Kaplan. 1997. Compositional consistency of a heteropolysaccharide- 7 produced by Beijerinckia indica. Biotechnol. Lett. 19: 803-807 https://doi.org/10.1023/A:1018356713795
  7. Saier, M. H., G. M. Cook, J. Deutscher, I. T. Paulsen, J. Reizer, and J. J. Ye. 1996. Catabolite repression and inducer control in gram-positive bacteria. Microbiol. 142: 217-230 https://doi.org/10.1099/13500872-142-2-217
  8. Sutherland, I. W. 1998. Novel and established applications of microbial polysaccharides. Trends Biotechnol. 16: 41-46 https://doi.org/10.1016/S0167-7799(97)01139-6
  9. Wu, J. R., J. H. Son, K. M. Kim, S. W. Nam, J. W. Lee, and S. K. Kim. 2005. Optimization of heteropolysaccharide-7 production by Beijerinckia indica. Kor. J. Microbiol. Biotechnol. 33: 117-122