Effect of Temperature and pH on the Biosorption of Heavy Metals by Exophiala sp.

Exophiala sp.의 중금속 흡착에 미치는 온도 및 pH의 영향

  • Lim, Joung-Soo (Department of Environmental Engineering, Suwon University) ;
  • Lee, So-Jin (Department of Environmental Engineering, Suwon University) ;
  • Lee, Eun-Young (Department of Environmental Engineering, Suwon University)
  • Published : 2008.06.28

Abstract

To find the optimum growth and metal removal condition of isolated strain LH2, effects of the environmental factors such as medium pH, growth temperature, and metal concentrations were investigated. Based on the 18S rDNA analysis, the isolated strain was identified to Exophiala sp. with 100% homology. Isolated strain Exophiala sp. LH2 showed maximum removal efficiency of metals at the shaking conditions of pH 7 and $25^{\circ}C$. When the concentration of metal was under 200ppm, the specific metal removal velocity at pH 7 increased from 0.01 to 4.43 mg-metal $L^{-1}{\cdot}d^{-1}{\cdot}mg{\cdot}DCW^{-1}$ as the concentration of metal increased from 10 ppm to 200 ppm. When 200 ppm of each metal was contained in the culture medium adjusted with pH 7, metal removal efficiencies Cr, Cu, Ni, Pb and Zn were 99.28%, 97.67%, 91.94%, 99.77%, 99.61%, respectively.

본 연구에서는 분리균주 LH2를 이용하여 각각의 중금속 (Cr, Cu, Ni, Pb, Zn)에 대한 최적성장조건을 도출하였으며, pH, 온도 및 중금속 농도 변화에 따른 중금속 제거효율을 관찰하였다. 분리균주는 18S rDNA 분석에 의거하여 종 유사성이 100%로서 Exophiala sp.로 동정되었다. 분리균주의 경우 $25^{\circ}C$, pH 7인 진탕배양 조건에서 가장 높은 제거효율을 보였다. 첨가되는 중금속의 농도가 200 ppm이하일 경우 중 금속의 비제거속도를 구한 결과 pH 7인 조건에서 중금속의 종류와 무관하게 10 ppm에서 200 ppm으로 중금속의 농도가 증가함에 따라 0.01에서 4.43 mg-metal $L^{-1}{\cdot}d^{-1}{\cdot}mg^{-1}{\cdot}DCW^{-1}$으로 증가하였다. pH 7로 설정된 배양액에 약 200ppm의 중금속이 첨가될 경우 중금속의 제거효율은 Cr, Cu, Ni, Pb, 및 Zn 이 각각 99.28%, 97.67%, 91.94%, 99.77%, 99.61%로 관찰되었다.

Keywords

References

  1. Bowen, H. J. M. 1979. The Environmental Chemistry of the Elements. Academic Press, London
  2. Connell, D. W. and G. J. Miller. 1984. Chemistry and ecotoxicology of pollution. John Wiley & Sons, New York
  3. Cho, I, C., E. S. Byeun, I. S. Kim, and S. C. Park. 1994. Leaching of Heavy Metals from Anaerobic Sewage Sludge by Thiobacilus thiooxidans and Thiobacillus ferrooxidans. J. Kor. Solid Wastes Eng. Soc. 1: 239-246
  4. Davies, D. J. A. and B. G. Bennet. 1983. Exposure Commitment Assessments of Environmental Research Centre, London
  5. Gadd, G. M. 1998. Accumalation of metals by microorganisms and alage. Biotechnology 6: 401-433
  6. Jain, D. K, and R. D. Tyagi. 1992. Leaching of Heavy Metals from Anaerobic Sewage sludge by Sulfur-Oxidizing Bacteria. Enzyme Microb. Technol. 14: 376-383 https://doi.org/10.1016/0141-0229(92)90006-A
  7. Kiran, I., A. Ramer, and T. Sibel. 2005. Biosorption of Pb(II) and Cu(II) from aqueous solutions by pretreated biomass of Neurospora crassa. Process Biochemistry 40: 3550-3558 https://doi.org/10.1016/j.procbio.2005.03.051
  8. Lee, E. Y., J. S. Lim., K. H. Oh., J. Y .Lee., S. K. Kim., Y. K. Lee, and K. Kim. 2008. Removal of Heavy Metals by an Enriched Consortium. J. Microbiology 46: 23-28 https://doi.org/10.1007/s12275-007-0131-6
  9. Lee, M. G. and K. H. Suh. 1996. Study on Adsorption of heavy metal ions by Cheju scoria. J. Kor. Environ. Sci. Soc. 5: 195-201
  10. Murley, L. 1992. Pollution Handbook, National Society for Clean Air and Environmental Protection. Brighton
  11. Manahan, S. E. 1991. Environmental Chemistry. Lewis Publishers, Chelsea, Ml (USA) 5th (ed)
  12. Maruyama. T., S. A. Hannah, and J. M. Cohen. 1975. Metal removal by physical and chemical treatement processes. J. WPCF, 47: 962-975
  13. Pack, S. W. 1987. Specific Chemical Reactions at the Cadmium Sulfide-Water Interface. Ph. D Thesis, University of Delaware
  14. Say, R., A. Denizli, and M. Y. Arica. 2001. Biosorption of cadmium(II), lead(II) and copper(II) with the filamentous fungus Phanerochaete chrysosporium. Biotechnol. 76: 67-70
  15. Sreekrishnan, T. R. and R. D. Tyagi. 1996. A Comparative Study of the Cost of Leaching Out Heavy Metal from Sewage Sludges. Proc. Biochem., 31: 31-41
  16. Thompson, J. D., D. G. Higgin, and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  17. Train, R. E. 1979. Quality Criteria for Water. Castle House, London
  18. Tyagi, R. C., C. Couillard, and F. T. Tran. 1991. Comparative Study of Bacterial Leaching of Metals from Sewage sludge in Continuous Stired Tank and Air-lift Reactors. Proc. Biochem. 26: 47-54
  19. Tyagi, R. D., D. Couillard, and F. Tran. 1998. Heavy Metals Removal from Anaerobically Digested Sludge by Chemical and Microbial Methods. Environ. Pollut. 50: 295-319
  20. Tyagi, R. D. and D. Chouillard. 1991. An Innovative Biological Process for Heavy Metals Removal from Municipal Sludge. In Martic A. M. Biological Degradation of Wastes(ed.). pp. 307-318, Elsevier Appl. Sci. Amsterdam
  21. 환경부, www.me.go.kr