CoMSIA Analysis on The Inhibition Activity of PTP-1B with 3${\beta}$-Hydroxy-12-oleanen-28-oic Acid Analogues

3${\beta}$-Hydroxy-12-oleanen-28-oic Acid 유도체들의 PTP-1B저해활성에 대한 CoMSIA분석

  • Kim, Sang-Jin (Department of Cosmetic Science, Daejeon Health Sciences College) ;
  • Chung, Young-Ho (Division of Forensic Science, National Institute of Scientific Investigation) ;
  • Kim, Se-Gon (Division of Applied Biology and Chemistry, Chungnam National University) ;
  • Sung, Nack-Do (Division of Applied Biology and Chemistry, Chungnam National University)
  • 김상진 (대전보건대학 화장품과학과) ;
  • 정영호 (국립과학수사연구소 법과학부) ;
  • 김세곤 (충남대학교 농업생명과학대학 응용생물화학부) ;
  • 성낙도 (충남대학교 농업생명과학대학 응용생물화학부)
  • Published : 2008.09.30

Abstract

The comparative molecular similarity indices analysis (CoMSIA) models between 3${\beta}$-Hydroxy-12-oleanen-28-oic acid (1-30) analogues as substrate molecule and their inhibitory activities ($pI_{50}$) against protein tyrosine phosphatase (PTP)-1B were derived and discussed quantitatively. Listing in order, the CoMFA>CoMSIA${\geq}$HQSAR>2D-QSAR model, these QSAR models had the better statistical values. The optimized CoMSIA F1 model at grid 3.0${\AA}$ had the best predictability and fitness ($q^2$=0.754 and $r^2$=0.976) by field fit alignment. The order of contribution ratio (%) of CoMSIA fields concerning the inhibitory activities was a H-bond acceptor (48.9%), steric field (25.8%) and hydrophobic field (25.4%), respectively. Therefore, the inhibitory activities of substrate molecules against PTP-1B were dependent upon H-bond acceptor field (A) of $R_4$-group. From the analytical results of CoMSIA contour maps, oleanolic acid derivatives will have better inhibition activities if $R_1$ group has H-bond acceptor disfavor, $R_3$group has steric disfavor and $R_4$ group has steric, hydrophobic, H-bond favor.

기질 화합물로써 3${\beta}$-Hydroxy-12-oleanen-28-oic acid 유도체(1-30)들과 그들의 protein tyrosine phosphatase(PTP)-1B 저해활성에 관한 비교분자 유사성 지수분석(CoMSIA)보델을 유도하였다. QSAR 모델의 통계 값은 CoMFA>CoMSIA${\geq}$HQSAR>2D-QSAR 모델의 순서로 양호하였다. 최적화된 CoMSIA F1 모델은 grid 3.0${\AA}$과 field fit 정렬조건에서 가장 족은 예측성과 상관성($r^2_{cf}$=0.754 및 $r^2_{ncv}$=0.976)을 나타내었다. 저해 활성에 관한 CoMSIA상의 기여비율(%)은 수소결합 받게장(48.9%), 입체장(25.8%) 및 소수성장(25.4%)의 순서이었다. 그러므로 기질 화합물의 PTP-1B에 대한 저해활성은 $R_4$-치환기의 수소결합 받게 장(A)에 의존적이었다. 등고도 분석 결과로부터 $R_1$-치환기는 수소결합 받게장이 작고 $R_3$-치환기는 입체장이 작으며 그리고 $R_4$-치환기는 수소결합 받게장, 소수성 및 입체장이 큰 치환기가 저해활성을 증가시킬 것으로 예측되었다.

Keywords

References

  1. Ukkola, O. and Santanielmi, M. (2002) Protein tyrosine phosphatase 1B: a new target for the treatment of obesity and associated co-morbidities. J. Intern. Med. 251, 467-475 https://doi.org/10.1046/j.1365-2796.2002.00992.x
  2. Alonso, A., Sasin, J., Bottini, N., Friedberg, I., Osterman, A., Godzik, A., Hunter, T., Dixon, J. and Mustelin, T. (2004) Protein tyrosine phosphatases in the human genome. Cell. 117, 699-711 https://doi.org/10.1016/j.cell.2004.05.018
  3. Wu, L. and Zhang, Z. Y. (1996) Probing the function of Asp128 in the low molecular weight protein-tyrosine phosphatase-catalyzed reaction. A pre-steady -state and steadystate kinetic investigation. Biochem. 35, 5426-5434 https://doi.org/10.1021/bi952885a
  4. Murthy, V. S. and Kulkarni, V. M. (2002) Molecular modeling of protein tyrosine phosphatase 1B (PTP 1B) inhibitors. Bioorg. Med. Chem. 10, 897-906 https://doi.org/10.1016/S0968-0896(01)00342-X
  5. Szczepankiewicz, B. G., Liu. G., Hajduk, P. J., Zapatero, C. A., Pei, Z., Xin, Z., Lubben, T. H., Trevillyan, J. M., Stashko, M. A., Ballaron, S. J., Liang, H., Huang, F., Hutchins, C. W., Fesik, S. W. and Jirousek, M. R. (2003) Discovery of a potent, selective protein tyrosine phosphatase 1B inhibitor using a linked -fragment strategy. J. Am. Chem. Soc. 125, 4087-4096 https://doi.org/10.1021/ja0296733
  6. Julien, S. G., Dubé, N., Michelle, R., Penney, J., Paquet, M., Han, Y., Kennedy, B. P., Muller, W. J. and Tremblay, M. L. (2007) Protein tyrosine phosphatase 1B deficiency or inhibition delays ErbB2-induced mammary tumorigenesis and protects from lung metastasis. Nature Genetics. 39, 338-346 https://doi.org/10.1038/ng1963
  7. Choi, J. H., Kim, H. S., Kim, S. H., Yang, Y. R., Bae, Y. S., Chang, J. S., Kwon, H. M., Ryu, S. H. and Suh, P. G. (2006) Phospholipase C1 negatively regulates growth hormone signalling by forming a ternary complex with Jak2 and protein tyrosine phosphatase-1B. Nature Cell Biology. 8, 1389-1397 https://doi.org/10.1038/ncb1509
  8. An, J. S., Kim, B. Y., Na, M. G., Kim, G. A., Bae, E. Y., Yang, S. M., Gwon, O. S., Kim, S. H., Choe, R. (2006) Screening of the secondary metabolite inhibiting protein dephosphorylation in cellular signaling. KRIBB. BU1200607041146. 1-141
  9. Kim, J. H. and Lee, K. T. Whitening cosmetics containing mulberrin document type and number. US Patent 6071525
  10. Zhenga, Z. P., Chenga, K. W., Chaoa, J., Wua, J. and Wang, M. (2008) Tyrosinase inhibitors from paper mulberry (Broussonetia papyrifera). Food Chem. 106, 529-535 https://doi.org/10.1016/j.foodchem.2007.06.037
  11. Nakagawa, M., Kawai, Ke. and Kawai, Ky. (1995) Contact allergy to kojic acid in skin care products. Contact Dermatitis. 32, 9-13 https://doi.org/10.1111/j.1600-0536.1995.tb00832.x
  12. Asante-Appiah, E., Patel, S., Desponts, C., Taylor, J. M., Lau, C., Dufresne, C., Therien, M., Friesen, R., Becker, J. W., Eblanc, Y., Kennedy, B. P. and Scapin, G. (2006) Conformation-assisted inhibition of protein-tyrosine phosphatase-1B elicts inhibitor selectivity over T-cell protein-tyrosine phosphatase. J. Biol. Chem. 282, 8010-8015
  13. Ahmad, G., Mishra, P. K., Gupta, P., Yadav, P. P., Tiwari, P., Tamrakar, A. K., Srivastava, A. K. and Maurya, R. (2006) Synthesis of novel benzofuran isoxazolins as protein tyrosine phosphatase 1B inhibitors. Bioorg. Med. Chem. Lett. 16, 2139-2143 https://doi.org/10.1016/j.bmcl.2006.01.062
  14. Seo, C., Choi, Y. H., Sohn, J. H., Ahn, J. S., Yim, J. H., Lee, H. K. and Oh, H. (2008) Ohioensins F and G: Protein tyrosine phosphatase 1B inhibitory benzonaphthoxanthenones from the antarctic moss polytrichasyrum alpinum. Bioorg. Med. Chem. Lett. 18, 772-775 https://doi.org/10.1016/j.bmcl.2007.11.036
  15. Na, M. K., Kim, K. A., Oh, H., Kim, B. Y., Oh, W. K. and Ahn, J. S. (2007) Protein tyrosine phosphatase 1B inhibitroy activity of amentoflavone and its cellular effect on tyrosine phosphorylation of insulin receptors. Biol. Pharm. Bull. 30, 379-381 https://doi.org/10.1248/bpb.30.379
  16. Jang, J. P., Na, M. K., Thuong, P. T., Njamen, D., Mbafor, J. T., Fomum, Z. T., Woo, E. R. and Oh, W. K. (2008) Prenylated flavonoids with PTP 1B inhibitory activity from root bark of Erythrina mildbraedii. Chem. Pharm. Bull. 56, 85-88 https://doi.org/10.1248/cpb.56.85
  17. Hong, J. H., Lee, M. S., Bae, E. Y., Kim, Y. H., Oh, H. C., Oh, W. K., Kim, B. Y. and Ahn, J. S. (2004) Screening of the inhibitory avtivity of medicinal plants against protein tyrosine phosphatase 1B. Kor. J. Pharmacogn. 35, 16-21
  18. Chung, Y. H., Jang, S. C., Kim, S. J. and Sung, N. D. (2007) 2D-QSAR and HQSAR on the inhibition activity of protein tyrosine phosphatase 1B with oleanolic acid analogues. J. Appl. Biol. Chem. 50, 52-57
  19. Kim, S. J., Kim, S. G. and Sung, N. D. (2008) CoMFA analysis on inhibitory effect of 3$\beta$-hydroxy-12-oleanen-28-oic acid analogues on PTP-1B activity and prediction of active compounds. J. Soc. Cosmet. Scientists Korea. 34, 109-115
  20. Akamatsu, M. (2002) Current state and perspectivies of 3DQSAR, Curr. Topics Med. Chem. 2, 1381-1394 https://doi.org/10.2174/1568026023392887
  21. Klebe, G. and Abraham, U. (1999) Comparative molecular similarity indices analysis (CoMSIA) to study hydrogenbonding properties and to score combinatorial libraries. J. Comput. Aid. Mol. Des. 13, 1-10 https://doi.org/10.1023/A:1008047919606
  22. Hu, L., Li, J., Hong D. and Ye, Q. Triterpenes type Protein Tyrosine Phosphatase 1B inhibitors and the preparation method and the use, China Patent., WO 2006/0609499 A1
  23. Lihong, H. (2005) Drug discovery based on traditional Chinese medicine, Proceedings of international symposium on development of Hanbang cosmetic technology. Soc. Cosmetic Sciencetists of Korea. 31, 3-30
  24. Tripos Inc., Sybyl Molecular Modeling and QSAR Software on CD-Rom, (Ver. 8.0) Theory and Manual., St. Louis, (2008)
  25. Kerr, R. (1994) Parallel helix bundles and ion channels: molecular modeling via simulated annealing and restrained molecular dynamics. Biophys. J. 67, 1501-155 https://doi.org/10.1016/S0006-3495(94)80624-1
  26. Cramer, R. D., Bunce, J. D. and Patterson, D. E. (1988) Crossvalidation, Bootstrapping, and partial least squares compared with multiple regression in conventional QSAR studies. Quant. Struct. Act. Relat. 7, 18-25 https://doi.org/10.1002/qsar.19880070105
  27. Amor, A. and Jan, San. (2007) Structural investigation of PAP derivatives by CoMFA and CoMSIA reveals novel insight towards inhibition of Bcr-Abl oncoprotein. J. Mol. Grap. Model. 26, 482-493 https://doi.org/10.1016/j.jmgm.2007.03.001
  28. Qiu, W., Avramoglu, R. K., Dub?, N., Chong, T. M., Naples, M., Au, C., Sidiropoulos, K. G,, Lewis, G. F., Cohn, J. S., Tremblay, M. L. and Adeli, K. (2004) Hepatic PTP-1B expression regulates the assembly and secretion of apolipoprotein Bcontaining lipoproteins: evidence from protein tyrosine phosphatase-1B over expression, knockout, and RNAi studies. Diabetes. 53, 3057-3066 https://doi.org/10.2337/diabetes.53.12.3057
  29. Zhang, Z., Lin, S. Y., Neel, B. G. and Haimovich, B. (2006) Phosphorylated actinin and protein-tyrosine phosphatase 1B coregulate the disassembly of the focal adhesion Kinase.Src complex and promote cell migration. J. Biol. Chem., 281, 1746-1754 https://doi.org/10.1074/jbc.M509590200
  30. Schneider, G. and Baringhaus, K-H. (2007) In Molecular design; Concepts and applications. pp. 64-65. Wiley-VCH. Frankfurt Germany