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Abstract: In this work, we review the routing models that use
game theoretical methodologies. A very common assumption in the
analysis and development of networking algorithms is the full co-
operation of the participating nodes. Most of the analytical tools
are based on this assumption. However, the reality may differ con-
siderably. The existence of multiple domains belonging to different
authorities or even the selfishness of the nodes themselves could re-
sult in a performance that significantly deviates from the expected
one. Even though it is known to be extensively used in the fields of
economics and biology, game theory has attracted the interest of re-
searchers in the field of communication networking as well. Nowa-
days, game theory is used for the analysis and modeling of proto-
cols in several layers, routing included. This review aims at provid-
ing an elucidation of the terminology and principles behind game
theory and the most popular and recent routing models. The ex-
amined networks are both the traditional networks where latency
is of paramount importance and the emerging ad hoc and sensor
networks, where energy is the main concern.

Index Terms: Ad hoc networks, Bayesian games, game theory, Nash
equilibrium, network routing, price of anarchy, routing modeling,
sensor networks.

I. INTRODUCTION

Although game theoretical concepts (like decision making)
have been discussed before, John von Neumann and Oskar Mor-
genstern established game theory as a separate field of science
when they published their book [1] in 1944, Since then great
strides have been made in this area, mainly in the field of eco-
nomics and biology. However, game theory can also be applied
to many fields of science, where decision makers have conflict-
ing interests. Thus, it comes as no surprise to read papers related
to networking that adopt game theoretical concepts to analyze a
protocol’s performance or propose a solution that corresponds
to a Nash equilibrium (NE) set of strategies.

Even if the works were initially limited to conventional net-
works, the recent development of wireless networking motivated
researches to seek for answers using the tools provided by game
theory. A review of some of these attempts can be found in [2].
Convinced that the application of game theory could reveal new
concepts regarding networking protocols, in this work we re-
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view the most important models proposed thus far for modeling
routing in communication networks in general. However, we de-
cided to cast more light on routing in networks with dynamic
topologies and energy constraints, as they introduce many new
issues that have not been faced before, such as frequent topology
changes and energy-aware routing.

There are some reviews that partially refer to routing mod-
eling via game theory. In [3], the authors provide an overview
of the applications of game theory to a vast majority of prob-
lems related to the operation of ad-hoc networks. They pro-
vide a layered perspective, by reporting the progress of apply-
ing game theoretical concepts to the various levels of the proto-
cols stack (physical layer, media access control (MAC) layer,
network and transport layer). Since they do not focus partic-
ularly on the network layer issues, the presentation of the re-
lated work in this field is neither extensive nor detailed. Yoo
and Agrawal in [4] provide a review of reputation-based, credit-
based and game-theory schemes for routing in mobile ad-hoc
networks (MANETS), focusing on the effectiveness of the tech-
niques in avoiding selfish behavior. In addition, Mandalas et
al. [5] present the most popular cooperation enforcement mech-
anisms.

This work attempts to achieve two objectives at the same time.
The first one is to cover the several approaches used to model
routing under the framework of game theory. Thus, it tries to
be as detailed as needed to provide an understanding of the phi-
losophy behind each approach. The other one is to provide a
“tutorial” on these models, which usually requires abstracting
the main ideas and conclusions. Hence, the reader will find both
model description using equations and results descriptions that
are usually presented without any proof. The interested reader
can refer to the papers themselves for a more holistic view.

The rest of the paper comprises three sections. The first one
(Section II) is an introduction to the most basic game theoret-
ical terminology, that will be used thereafter. The second part
(Section III) is a review of the routing models mostly proposed
for conventional networks, although some of them may be used
in wireless networks as well. Then, the third part (Section IV)
covers the case of ad-hoc and sensor networks in particular, fol-
lowed by the conclusions.

II. GAME THEORY FUNDAMENTALS

In this section we introduce some basic definitions and the-
orems of game theory, so that the reader gets familiarized with
its terminology and way of thinking. Although the feminine pro-
noun is preferred in many game theoretical texts, we will use the
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masculine pronoun when referring to a general decision maker
or game player.

A. Terminology

Game theory could be defined as “the study of mathematical
models of conflict and cooperation between intelligent rational
decision makers” [6]. The people or the entities (decision mak-
ers in general) that play the game are called the players. The
players take part to the game by performing particular actions
(cv;) or moves. The set of player i’s possible actions is called
the action space A; of player i. An action profile a is a vector
whose ith element is the action «; of player 7, while a_; de-
notes the vector of all players’ actions except ¢. Each player has
preferences for the action profiles. For example, a player may
prefer the action profile a to another action profile b. In order to
represent this preference, the payoff function is used (it is also
called utility function). Since a player is affected not only by its
own actions, but also by the actions of the other players as well,
a utility function u; assigns a real value to each action profile of
the game. The utility function should fulfill some axioms, but in
general, it should assign a larger value to an action profile that
is preferred over another one. Thus

ui (a) > u; (b), )]

if a is preferred over b.

A very critical assumption in game theory is that a player will
always act towards the maximization of its own utility. This is
called the rationality assumption. The actions that a player per-
forms are also called strategies of each player. A player is as-
sumed to select those strategies that would result in the highest
benefit to him.

Strategies are characterized as pure strategies (s) if they are
clearly defined choices of actions, while mixed strategies (o)
use probabilistic distributions over the pure strategies. The cor-
responding spaces for the aforementioned strategies are the pure
strategy space S; and the mixed strategy space ¥; respectively.
Now, we can define the game in its normal form as a three-tuple
< N, S,u >, where \ is the set of players, S is the pure strat-
egy space of the game and u is the vector of the utility functions
of the players.

In many cases examined in the framework of game theory,
the actions of single selfish players are considered. These types
of games are called non-cooperative games. On the other hand,
if a fraction of the players cooperates and forms coalitions, the
games are called cooperation games and coalition games.

If the summation of the utilities of all players is zero in every
outcome of the game, then it is called a zero-sum game. If not,
the game is called non-zero-sum.

In a static game, the players make their decisions simulta-
neously at the beginning of the game. A game that is played
only once is called a simultaneous game. In a dynamic or se-
quential game, the players interact with each other, as they do
not decide simultaneously, but they follow a sequence. If the
interactions are repeated in time, the game is called repeated,
and each interaction corresponds to a stage of the game. In this
case the players have the opportunity to modify their strategies
over time. Evolutionary game theory was developed in order to
further analyze dynamic games. Depending on its duration, a
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repeated game can be finite (the game stops after a number of
stages) or infinite. In a finite game of T' stages, the total utility is
a function of the strategies followed in each stage of the game:

T
U; = Z ui(t, s).
t=1

In an infinite game, the above definition would result in an infi-
nite utility. Thus, the discounting technique is used, where the
total utility is computed as

@)

o0

Uy = z 55ty (t, 5).

t=1

€)

The parameter § is called the discount factor and reduces the
effect of future payoffs on the total utility.

When the players of the game have full knowledge of the
other players’ previous moves, they play a game with perfect
information, in contrast to a game with imperfect information,
where the full knowledge of the other players’ moves is impos-
sible. Furthermore, when the utility functions and the possible
strategies are known to all players, then a game with complete
information is played. On the contrary, a game with incomplete
information is a game where some users are not fully aware of
the played game. Thus, there can exist games with complete but
imperfect information, i.e., a game where the decisions are made
simultaneously by all players and no information about the other
players’ moves is possible (imperfect information) but the util-
ity functions are known to every player (complete information).
On the other hand, a game where the players’ moves are known
to everyone else but the utility functions are hidden is a game
with incomplete but perfect information. Games with imperfect
information are also referred as Bayesian games, because the
players update their beliefs using the Bayes’ rule known from
probability theory.

Symmetric games are the games where the set of actions is
the same for all players and have the same utility functions.
‘What matters is only the strategies played and not who is playing
them. In an asymmetric game the same set of strategies results
in different payoffs for a particular player, depending on which
strategy was followed by him.

B. Equilibria

One of the objectives of the theory is to analyze and predict
the effect of different strategies. There are strategies, for exam-
ple, that result in a state of the game where no player has any
incentive to deviate from it. This and similar situations are sig-
nificant operating points of the game and are called equilibria.
The most well known is the NE.

A NE is a set of strategies where each player has no incentive
to deviate, in other words, given the strategies of all other play-
ers, if he changes his strategy he can only decrease his utility.
More specifically, if s; is an arbitrary action of player ¢ and s_;
is the set of actions of all other players, then the action profile
s* = (s}, s*,) constitutes a NE if, for every player i,

wi(s], 8%;) 2 ui(s,8%,), Vs € S,

17—

“4)
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Table 1. The utilities of players 1 (P1) and 2 (P2) in the PD.

P1\ P2 | Confess | Defect
Confess (5.9) (0,10)
Defect (10,0) | (L,

The operating point that corresponds to a NE is also referred as
Nash equilibrium point (NEP). If the strategies are mixed, then
the utility function refers to the expected payoff, which is com-
puted based on the probability distribution functions of the play-
ers over the pure strategies and the payoff for each pure strategy.
Hence, the utility of the mixed strategy o = (0y,0_;) is com-
puted as follows:

Z ai(si)ui(si,0-4).

;€S8

&)

ui(o) =

Now, we can define the NE for mixed strategies. Assuming
that o; is an arbitrary probability function of the pure strategies
of player ¢, the mixed strategy profile * = (¢}, o™ ;) constitutes
a NE if, for every player 4,

wi{o},0,) > ui(o4,0%;), Vo, € ¥;. (6)

The NE specifies the strategies that will be followed by ra-
tional players in a game. If it exists and is unique, it actually
provides us with the strategies that will definitely be followed
by rational players. Thus, we are able to know the result of the
game and the strategies that will be followed before even the
game is played. Nevertheless, although the NE corresponds to
a stable state of a game, this does not mean that it is the op-
timal operating point. For this reason, the concept of Pareto
optimal (PO) point is used, defined as the set of strategies where
a player cannot be better off unless he decreases the utility of
another player. The PO point corresponds to the social optimum
operating point, because all players achieve the maximum pay-
off without reducing the payoff of any other player. Even if the
PO point is different from the NE in general, there are cases
where the same strategy profile is both a PO and a NE point at
the same time. For the system designers, this coexistence is an
objective that they try to achieve.

C. The Prisoner’s Dilemma Game

A very popular example in game theory textbooks is the so-
called Prisoner’s dilemma (PD). The game has two players:
Two suspects who are accused of a crime, but the prosecution
authority does not have enough evidence to charge accusations.
Thus, it proposes to each one of them a reduction of the penalty
is he confesses. In particular, if only one of them confesses, then
he will go free, while the other one will go to prison for 10 years.
However, if none of them confesses, both of them will get 1 year
of imprisonment. Finally, if they both confess, both of them will
be charged with 5 years of imprisonment. Table 1 summarizes
the utilities of the two players in each case. Each player has two
possible actions, confess or defect. The form (x,y) is used to
indicate that the payoff of the player 1 is 2 and the payoff of the
player 2 is y.

Fig. 1. The simple network of a common source-destination pair, con-
nected via L parallel links of variable capacity.

How should the suspects act? If each one of them thinks self-
ishly, then the best strategy for him is to confess, no matter what
the decision of the other suspect will be. Thus, both of them
confess and so the (confess, confess) strategy is the NE of the
game and each player is imprisoned for 5 years. However, as it
is obvious, this is not the best the two suspects could achieve. If
both of them defect, then they would be imprisoned for only 1
year. This is the PO point, which is the social optimum. The PD
is a non-cooperative game with imperfect information that can
be easily extended to a multi-player or a repeated game and it is
the basis for many models used to analyze the performance of
routing protocols in telecommunication networks.

III. ROUTING IN COMMUNICATION NETWORKS

Motivated by the achievements of game theory in other fields
of science and the increasing interest in networking, many re-
searchers attempted to apply the concepts of this theory to com-
munications and particularly network routing. Next, we review
the most important relevant works.

A. Classic Approaches and Nash Equilibria

One of the first papers that applied game theory to the prob-
lem of routing was {7]. Like in many other works that will be
presented, the model comprises a set A" = {1,2,-- -, N'} of self-
ish users (the players) that sharea set £ = {1, 2, - - -, L} of paral-
lel communication links that connect a common source node to
a common destination node, as Fig. 1 indicates. This model, al-
though a simple one, is extensively used in all the related works,
mainly because it captures the basic concepts of selfishness in a
network and it can be extended to the general case of a real net-
work with many nodes and links. The capacity of each link is
denoted by ¢¢. Every user 7 has a throughput demand which is an
ergodic process with mean value 7¢. The action of each player
i refers to deciding the fraction f} of the total throughput that
will be sent through each link £, so that 3, . f; = r*. Sim-
ilarly, on each link the total flow will be the sum of the flows
each user chooses to pass via link £ and f; = >, f7. Let
f, = (fel, ff, e féN) be the vector of the flows of all users
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through link £ and f' = ( fif fi) be the vector of the
flows user ¢ decides to pass via all links. Finally, the system
flow configuration f is the vector of the flow configurations of
all users: f = (fl,fz, x -,fN>.

Each user ¢ measures its performance using a cost function
CHf) = Yy Ci (), where Cj refers to the cost of user ¢
when choosing to pass a fraction of its flow via link £. The
cost is always finite and the aim of each user is to minimize
it. Alternatively, one could think of the utility of each user as
the negative of this cost, hence the maximization of the utility
function corresponds to cost minimization. Thus, users decide
on the flow that they will send over each link, such that they face
the minimum possible cost.

Since more than one user exist, the cost function of a node de-
pends not only on its decision regarding its own flow, but on the
flow configuration of all the other players as well. This means
that the nodes compete with each other in order to achieve the
minimum cost, meaning that the game is non-cooperative. A
possible NE corresponds to a flow configuration where no node
would have any incentive to change its flow configuration and
achieve lower cost.

Assuming that the sum of users’ demands is always lower
than the sum of link capacities, it can be proved that a NEP
always exists but its uniqueness is still a question. The authors
prove several related theorems by taking into account the proper-
ties of the cost function. For example, if the cost function C of
each user ¢ is an increasing function of both the ¢’s flow over link
¢ and the total flow f, over this link, i.e., Ci(f) = g (f}, fe),
then the NEP is unique. Two special cases of such a cost func-
tion are considered. In the first one, the cost function takes the
form C} = f;Ty(fs), while in the second one the undefined term
Ty takes the form:

1/ (ce = fe),

0,

if fg < ¢y

if fy > co. @

Ty (fe) = {

This definition of 7T} is in fact the average delay in an M/M/1
system, thus the cost for a particular user is proportional to the
flow the user assigns to each link and inversely proportional to
the unused bandwidth of this link. If the link capacity is ex-
ceeded, the cost tends to infinity, indicating that another link
could be used so that the link capacity is never exceeded.

An extension to the general case of a network comprising
more nodes is also provided. More specifically, the network
G = {V, L} refers to a network with a set of vertices V and a
set of links £. A link is also referred to as (u, v), where u is the
starting point and v is the ending point of the link. Each user has
a different source-destination pair (src’, dst*) and splits its traf-
fic demand r* among the available paths, each path comprising
a set of links. The authors prove that the existence of the NEP is
also guaranteed in this case, however, the uniqueness cannot be
easily preserved, since more strict properties should hold for the
cost functions. They also state that the general case of a network
is very hard to analyze, compared to the simple case of the two
nodes.

Based on the above model for the general network, Altman
et al. in [8] provide the necessary conditions in order for the
NE to be unique. In specific, for a cost function of the form
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CZ = f}Tg (fe), where T; = agff(e) + by, the NE is unique if
0<pl)=p<p*=(BN-1)/(N—-1),for N > 2. apand by
are two positive parameters that may depend on £. If additionally
b, = 0 and all users have the same source and destination, the
resulting NE is globally optimal and the link flows of different
users are proportional to their total traffic.

In contrast to previous works that consider the cost function
in a multiplicative way, the authors in [9] assume that the cost
function is an additive combination of the objectives of rout-
ing, namely the maximization of throughput and the reduction
of the delay. So, the utility function C* of an arbitrary user %
follows (8):

fi

e~ f¥

®)

C(F)=Y ayfi+> B

el Lel

In the analysis of non-cooperative networks, two kinds of ob-
jective functions were used: The net benefit and the power. The
first one measures the user’s satisfaction by subtracting the cost
from the benefit (benefit-cost), while the second one uses their
ratio (benefit/cost).

The first part corresponds to the total flow for user ¢ (the ben-
efit of the user) and the second one corresponds to the total con-
gestion (the cost the user has to pay) for an M/M/1 queue model.
Thus, the cost function is said to be of the benefit-cost or net ben-
efit form, a very common category of cost functions!. The para-
meters oy and 3} are the weights each user assigns to each link
for the two parts of the expression and their ratio v} = o/} is
the 1th fradeoff parameter for link £.

Using a model similar to that of [7], the authors conclude that
a unique NE exists that satisfies the following equality (for user
¢ and link £):

fe =l = 1V = (e = £7) ©)
where
\ (N = 1) = /(N = 1)* — derye
fe=c— 5 (10)
e
and v, = Y, v 7s- This NE is feasible if
1
cL27(Y£;—(N—1)>,WeN (1
Te \Ve

where ¢;, = maxse{cg}. Animportant conclusion of the above
analysis is that the larger the tradeoff parameter of a user, the
greater the allocated flow in the network. Hence, a user with
high throughput requirements should choose a large tradeoff
value, while a user with low throughput requirements could use
smaller values of 72. What is more, if the users increase the
tradeoff value that corresponds to a single link, the flow on that
link will increase. If all users use the same tradeoff values for
all links, then it is proved that the unutilized bandwidth of high-
capacity links is greater than the unutilized bandwidth of low-
capacity links.

1 Another common form is the power form, where the ratio of the benefit to
the cost is used.
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B. Quality of Service

The quality of service (QoS) is taken into consideration
in [10], where the authors consider the case of multiple streams
with QoS constraints over a multipath network in general, as
a continuation of their work in [11]. Streams are to be shared
between two available links: One with a high-quality metric
and the other with a low-quality metric. The players are the
streams and each player’s strategy is to select the percentage of
its stream that will follow the high quality metric link, denoted
as p;. The utility of each stream U* is a function of the goodput
of each link (77, for the low-quality and Ty for that high qual-
ity links respectively) and the bit rate of the stream R;. Hence,
U* = piR;Ty + (1 — p;)R;Ty.. Assuming that packet losses
are only possible due to unsatisfied QoS constraints, the authors
argue that a NE is feasible and formulate an expression provid-
ing the player’s strategies in the equilibrium. They show that for
cases of practical interest the requirements of the NE are satis-
fied.

C. Min-Max Games

Consider a game with two players, A and B. If player B
chooses the strategy that results in the worst case for player A,
then the rational player A will still try to maximize its payoff.
The minimax value is the maximum utility of player A under
the worst-case conditions set by his opponent. A similar prob-
lem is investigated by Yamaoka and Sakai in [12], where the
authors use the minimax principle to model and evaluate the per-
formance of a packet-switched network. The network consists
of relay nodes that are connected with each other via links. In-
side each node there are two priority queues functioning accord-
ing to a FIFO policy; a high-priority queue and a low-priority
one. Two players are considered; the “packet” and the “net-
work.” Each packet aims at keeping its qualities (e.g., delay) at
the best possible level. On the other hand, the network aims to
prevent packet losses and level off the qualities of the packets.
Sometimes the two players have common interests while other
times their interests are in conflict. Hence, a non-zero-sum game
is formed, where the minimax principle can be applied. The
packet player decides the link it has to go next (usually trying
to follow the path with the minimum number of hops). The net-
work player decides if a received packet will be enqueued to
the high or the low priority queue. A packet has two parame-
ters: The permissible delay time W and the passage delay time
t. The quality @ of a packet is computed as @ = 1 — ¢t/W.
The closer to 0, the lower a packet’s quality. The authors use
computer simulations to show that the distributed control based
on the above model performs better in terms of packet loss rate.

D. Bottleneck Games

An interesting view on routing modeling can be found in [13],
where the authors formulate a bottleneck game. In conventional
approaches to routing games, the petformance is considered ad-
ditive (the sum of link cost functions). In bottleneck games, the
bottleneck (or min-max) objectives are only characterized by the
worst part (e.g., link). Their target is to study the performance
of a network where users route their traffic selfishly, aiming to

optimize the performance of their bottlenecks. This gives rise to
a non-cooperative game.

The players of the model are the users. Each user ¢ has a spe-
cific throughput demand ~; and may use multiple paths from
source sr¢* towards the destination dst?, and on each path
p € Plrehdst) flows fi amount of traffic. The sum of f; for
all paths is the throughput demand of the node and the strategy
of a node is to decide the flows over each path. Each link ¢ of
the network graph is associated with a performance function g,
which depends on the total flow fy over this link. The bottle-
neck of a user is defined as the performance of the worst link
of all users’ flows. Finally, the aim of each user is to minimize
its bottleneck. Despite the discontinuity of the strategy space,
the authors prove that, for both the splittable and the unsplit-
table traffic case, at least one NE exists. However, it was shown
that these equilibria can be very inefficient. In order to improve
these inefficiencies, additional routing rules need to be applied
to the network. As an example, for the splittable traffic, the NE
is optimal if the selected routes contain the minimum number of
bottlenecks.

E. Price of Anarchy

A detailed analysis of the efficiency of the NEs was initially
made by Koutsoupias and Papadimitriou [14], who used the
model of non-cooperative game for the routing traffic problem
and investigated the performance loss due to lack of cooperation
among users. Considering the simple model of L parallel links
connecting a source-destination pair, they assume that all links
have the same capacity and the players assign their traffic to the
links. The pure strategy for the users would be to select a single
link to pass their traffic through. A mixed strategy would cor-
respond to a probability distribution on the set of links, which
would indicate the frequency with which each link is selected.
Hence, the traffic is assumed unsplittable. Let us assume that a
user 4 selects a link £ with probability pi. Let M* denote the ex-
pected load on link £ and L, denote the initial load on that link.
Then

My,=L,+ Zp}fz
iEN

(12)

where f* is the amount of traffic for user i.
The cost for user ¢ when its traffic f* is assigned to link £ is

Ci=Le+ f'+) mpf' =M+ (1-p}) f*
J#i

(13)

and each user’s target is to minimize its total cost by selecting
the appropriate distribution over the links.

The main objective of the work was to compute the worst-
case ratio. It is defined as the ratio of the worst NE to the global
optimum solution, usually in terms of latency. This ratio is also
known as price of anarchy and it has been the center of interest
for many works as yet. The authors proved in that work that for
two equal capacity parallel links the worst-case ratio is 3/2, no
matter what the number of users is. If the two links are not the
same, this ratio reaches the golden ratio ¢.

Following the previous work, Roughgarden and Tardos in
{15] consider the problem of assigning traffic to the links of the
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network, so that the aggregated latency is minimized. Specif-
ically, they study the effect of lack of coordination among
the nodes of the network, meaning that every node acts self-
ishly and selects the link with the minimum latency from its
source towards its destination. They consider only pure strate-
gies, compared to [14] where mixed strategies are investigated.
The model adopted assumes a set of K source-destination pairs
(srek, dsty). A set of possible paths Py, is associated with each
such pair, and P = UpPg. A flow f : P — R is a function
that assigns a positive real number to each path and the total flow
fe viaedge e is the sum of flows of all paths where e is involved
t fe = Y p.ccp fP. Bach (srey, dsty) pair is associated with a
traffic rate 7, and a flow f is said to be feasible if for all k

Z fp=rk.

PePy

(14)

The latency I, of each edge e is a non-negative, non-
decreasing and continuous function of the flow on that edge.
Then, the latency [p on a path P given a flow f is denoted by
lp(f) = Yecp le (fe). Finally, the cost of a flow f is defined
as

C(f) =Y _Ip(f)fp.

PcP

(15)

A selfish behavior of a user would mean that it selects the mini-
mum latency path to route its traffic. A flow is in NE if for every
source-destination pair the selected path leads to the minimum
latency and any other path would result in a higher latency. It is
shown that when a feasible flow is in NE, then the cost can be
expressed as

K
C(f) =D Lu(f)re. (16)
k=1

On the other hand, in order to find the optimal flow that
minimizes the total latency, a non-linear programming prob-
lem is formulated. The objective is to minimize the expression
Y ece Cele, Where £ is the set of edges of the graph represent-
ing the network and ¢, = l(fe)f.. Assuming only linear la-
tency functions /., then the price of anarchy is proved to be 4/3.
Roughgarden also proved in [16] that the price of anarchy is not
dependent on the network topology and the worst possible ratio
may occur even in very simple networks.

F. Price of Routing

In their work [17], Awerbuch et al. study the price of anarchy
in the case of unsplittable flows. An arbitrary player & assigns
all its traffic to only one path. Using the same terminology as
previously, in the case of pure strategies, since the flow of each
user is unsplittable, then Py has only one member P; and its
entire traffic passes via this path and thus via the edges that form
the path. Thus,

fe= > fo=)Y fp =

P:ecP k:e€ Py,

Y

k:e€Py

(17)
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The latency for user & that uses path P’ instead of path P is

defined as:
> >

(e€P")A(ecP) (e€EP')A(egP)

cpr k= le(fe) + le (fe + rk) :

(18)

For mixed strategies, a set of random variables {Xpy} is
defined, which indicates if user & uses the path P. By defini-
tion Pr{Xpy = 1} = ppyj. Another set of random variables
{Xe,x} indicates if edge e is used by user k. It is defined that
Xek = preGP Xpy and Pr{X., = 1} = p. x. Then, the to-
tal flow onedge eis fo = Y & Xe,kTk- S0, the expected latency
of user k for using path P is computed as

cpk=E {Z le(fe)| Xpk = 1}

eEP

= Z E{le(fe+ (1= Xpi)re)}

e€P

(19)

In general, the expected cost C(.S) for a given system S of pure
or mixed strategies is defined as the expected total latency in-
curred by S: C(S) = >~ c g le(fe) fe, and finally the coordina-
tion ratio (or price of anarchy) is defined as

_ C(S)
R= mgLXC(S*)

(20

where the maximum is computed over all NEs strategies S and
S* denotes the optimal system of pure strategies. Note that the
cost is the influence of both the latency and the traffic load of
each user.

The analysis shows that for linear latency functions, the price
of anarchy is approximately 2.618 for the weighted and 2.5 for
the unweighted (meaning that all users require the same amount
of bandwidth) traffic. What is more, for polynomial latency
functions of degree d the worst-case coordination ratio is d®(%)
for pure and mixed strategies.

G. Price of Stability

While price of anarchy considers the worst NEP, the ratio of
the best NE to the global optimum is also a significant metric
of NEP efficiency. It was first defined in [18] and later named
as price of stability in [19], which studies the network design
games with fair cost allocation. This term is useful because
it can show how close to the global optimum a NE can reach,
and therefore if the corresponding strategies are proposed to the
players, no player will have an incentive to deviate (which sta-
bilizes the system), while the achieved payoffs will be close to
the global optimal ones.

H. Bounded Flow Demands

In [20], the authors consider the problem of flow control over
single and multiple links. In contrast to previous works, in this
case the authors insert bounds on the flow demands of each user.
In particular, the players are the users of the set ' = {1,---, N'}
who wish to send their flows over L parallel links. User ¢’s flow
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f*is chosen from the interval [m?, M|, where m® and M* are
the lower and the upper bound of the flow of the corresponding
user and it is a private knowledge only, meaning that no user has
any information about the bounds of the other users. This flow is
split over all available links and f! = {fi, fi,- -, fi}isavector
containing the fraction of user 4’s flow over each one of the L
links. The flow profile for all usersis f = (f1, f2,---, V).

For the case of a single flow, omitting the subscripts that refer
to the links, the benefit for user 7 managing to send flow f* over
the single link is defined as
i { i A

B () =(f)
where 3 is a weighting factor which in general is different for
each user. The cost function is a function of the congestion on

the link:
?Yi(f) — {1/(C_F)a

o0,

€2y

F<e

F>c @2)

where F' is the total flow over the link and ¢ represents the
link capacity, known a priori by all users, and should satisfy all
users’ minimum demands: ¢ > ZN=1 m?. The authors adopt
the power form for the utility function, thus the utility for each
user ¢ is computed as

i BUY () (c—F), F<ec
v = 7 (£) _{(go,) F>c

For this single link case it is proved that a NE exists and is
unique. Furthermore, the authors show that the flows f* at NEP,
under the assumption that 3* = 3, Vi € N, are given by the

(23)

following expression
M if M* < P*
=Kmil, ifmt > P (24)
P otherwise

where P* = f(c— Z;il f*7) is acritical point and an algorithm
is provided for its computation.

In the case of multiple flows, they first define the available
capacity for useri as ¢ = ¢, — Y i f7 and then compute the
fraction of ¢} used by each user on every link:

g = fei/cg

A normalized vector is produced by dividing with the sum of all
fractions

r'={ri,rh, i}, (25)

. 7y
Wi = (26)
124

~ ~ i
r = {T1a7“2a :

The cost function is now defined as

o [{ROE) - P}, F<e
‘(f) = 27
7'(f) {OO’ Foe 27
and the authors choose the function R(r*) to be defined as
. . . L .
R (7,7, L) =1—> #tlog (7}) (28)
=1

and thus the R — 1 is an entropy function. Finally, the utility
function is defined as

Yo fi
ni(f)

It is shown that the NEP is unique and the equilibrium flows fg
are computed using the equilibrium flows of the single-link case

Frias fi = (cofc) f

UYf) = 29)

L. Combined Routing and Flow Control

Altman et al. in [21] consider the combined problem of rout-
ing and flow control in a network of parallel links. Starting from
the case of a single user, they let A = {A1, X2, -, A} be the
vector of the throughput experienced by the user on every link
£. Using the expression for the delay on an M/M/1 queue, the
average delay experienced by the user when splitting its traffic
over the L links is

L Loy,
3 = (1 / Ag> |
;::1 Pl Al

The tradeoff function is defined as the ratio of the perceived
throughput to experienced delay:

(30

PN
(Z)\‘J L B+l g N
w3 e

Using the two previous equations and with the help of the log-
arithm of U () the authors prove that for a single user, an opti-
mum solution exists and it implies that the links with the largest
capacity are preferred, while the links with lower capacity may
be assigned with zero traffic.

In the same work, two other cases regarding the form of utility
function are examined. In the first one, U7 (A) is defined as

L
J=Y Xlee=X), Be(@®1) (32
£=1

which is actually the sum of utility functions on each link, each
one corresponding to the product of the throughputand the delay
on the link. In this case, the optimal solution has the form Ay =
(B/(+ 1))ce, which is much simpler than that for U (). Note,
though, that in this case all flows are assigned non-zero traffic,
as the utility function lacks a global knowledge of the overall
throughput and delay. The second utility function proposed is

o (B (-5

where € is the total capacity of all links. In this case a set of
optimal solutions Ay is possible provided that the following ex-
pression is satisfied

(33)

(34

L
S
=1
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For multiple users, similarly to (31), each one’s utility is de-
fined as

L B+1 L )\'i
) i A ST Y
U\ = <Z>\4) ch—ki 1A >0 (35)
=1 =1 £ ,
0, if\, =0
or in its logarithmic form:
L i

L
L'(A) = (B +1)log (Z Az) ~log (Z - if A2> . (36)
£=1

£=1

Since, the examination of NEs is difficult for the general case,
the authors investigate the equilibrium when the number of
users tends towards infinity. This is the so-called asymptotic NE,
which is defined below:

For N player game with N arbitrary large, the set of flows {\}}
constitute an asymptotic NE if for all i € N/

. iy ya*y Y = NG NI,
ngnooL (AZ AN }j?é’b) A}gnoo {Ar?}ezNL ( 5 AN }m)-
(37)

The aforementioned equilibrium flows are said to constitute a
O(1/N) NE with exponent « if there exists a non-positive scalar
x, independent of NV, such that for all § € A/

L. ()\i*’ A ) — L. (/\i A ) Kl
i (A AN Foe {glﬁzv (Ao AN oz ) + N

+O(1/N). (38)
For the symmetric case where X} = X;/N these flows are
proved to constitute a potential asymptotic and O(1/N) NE with
k <0.

J. Partially Optimal Routing

In very large networks it 1s very probable that more than one
administrative domain will coexist. Within each domain, the
corresponding authority minimizes the cost. However, in order
to route traffic, it should pass via other domains. Thus, although
optimal routing takes place inside domains, selfish behavior is
observed when routing packets across the domains. This is the
problem of partially optimal routing, investigated in [22]. Ex-
cept for the minimization problem for the entire network, the
authors consider a minimization problem for each domain sepa-
rately. If these two problems have the same equilibria, then the
optimization inside each domain results in the optimization in
the entire network. Unfortunately, this is not the case. A par-
tially optimal routing may worsen the performance of the entire
network, under some circumstances. The inefficiency caused by
partially optimal routing is also examined and it is proved that
for a class of latency functions, the partially optimal solution is
no worse than 25% of the global optimal one. In the case of mul-
tiple entry points in each domain, the partially optimal routing
can be arbitrarily bad even for simple latency functions.
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K. Repeated Games and Evolutionary Game Theory

In classical one-shot games the players do not have the op-
portunity to learn the behavior of the other players nor can they
alter their behavior during the game. However, in the real world
the players will be able to communicate with each other, form
coalitions and in general modify their behavior as the game is re-
peated, so as to maximize their benefit. Thus, a non-cooperative
dynamic repeated game should be used in order to model these
situations. While all aforementioned works assume one-shot
games, in their work [23] La and Anantharam use dynamic re-
peated games to model routing. As usually, they consider a two-
node network of L parallel paths where a set of A users wish to
send their flows via the available links. In this work, the authors
think of the users as network access providers, not individual
users. Without loss of generality, they assume that the paths are
ordered in decreasing capacity ¢, and users are ordered with de-
creasing average traffic rate 7;. They follow the common prac-
tice of the discount factor § € (0, 1) to model the finite game. In
each stage the game is basically described like in [7]: The flow
fi of a player i is split over the links so that f; = >, . fi,and
the total flow fy overalink £is fo = .\ f§. The flow profile
f=Af1,fe, -, fn} is the vector of the flows of each player.
The objective of each user is to minimize the cost Ji( f), which
depends not only on its decision on how to split the traffic over
the link, but also on all other players’ decisions. A flow f* isa
NEP if

Jz(f*) = J(fl*a"'afi*—laf:afi*-i»la"'vf;\})
- }nEl}rv'l‘ J(ff?'“7fi*—17fi7 ;i}—laufj)’\(l)

i i

(39)

In order to continue the analysis, the authors consider a particu-
lar class of cost functions with the following properties:

o Jilf) = Tper Jilfe):

o J§ is continuous.

o Jilfe) = Ti(fh fo) = fiTu(fo).
o Ty(fo) =T(ce— fo).

o Ty(fe) is positive, strictly increasing, convex and continu-
ously differentiable.

o To(fe) —ooas fo— co
These conditions are sufficient to guarantee the existence of
a NE. Unfortunately this equilibrium does not correspond to
the system-wide optimal flow f that minimizes the total cost
C = ¥ ,cn Ji(f). Nevertheless, the theory of dynamic games
implies that this optimal point can be reached in the case of re-
peated games as a NE. For this reason, the reservation cost v; of
a user ¢ is defined as follows:

Y, = max (min Ji (fi,f_i)) : (40)

f—i€F_¢ \ fi€F;
Also, let the NEP of the one stage game correspond to flow f*
and a cost J for each user 4. Then, the authors prove that in
the repeated game case, if the discount factor ¢ is sufficiently
close to 1, then there is a NEP that achieves the minimum total
cost C'. What is more, it can be proven that there exists a sys-
tem flow fthat achieves the global-wide optimum cost C’ and a
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cost for each user that is either smaller or equal to the cost that
corresponds to the NEP.

The authors also investigate the case of general networks with
only one source-destination pair. They managed to prove that
in this case too, a NEP exists for the repeated game where the
minimum cost C"’ is achieved, provided that the discount factor
is sufficiently close to 1.

Fischer and Vocking in [24] investigate the evolution of sim-
ple routing games in time. Towards a more realistic model, they
assume that the game is repeatedly played against random oppo-
nents. Based on their observations as time passes by, the players
have the opportunity to optimize their behavior. According to
their model, for any set of commodities k € K = {1,---, K},
a fraction of 7 agents wishes to send an equivalent amount of
traffic from the same source srcy to the same destination dsty,
via the available set of paths P. If the agents are selfish, then
cach one’s objective is to minimize its own latency. We may
assume that an agent may consider revising its routing strategy
from time to time (following a Poisson process). In this case,
it will consider changing the current path and using a new one,
preferably with a lower latency. If it finds such a path, it might
transit to it with probability proportional to the latency gain. Let-
ting the number of agents tend towards infinity and replacing
the random variables representing the change of the population
shares in one step with their expected values, then we can derive
the following differential equation:

F(P)=Xefp (I —lp)fork e K,PEPy (41
where fp and [p are the flow and the latency of path P, 1i; de-
notes the average latency of commodity & and f indicates the
derivative of flow f with respect to time. Finally, A is a fac-
tor used to ensure that probabilities do not exceed 1 and do not
influence the solution orbit of the system of differential equa-
tions. The above equation is also known as replicator dynamics
and has been studied in the context of evolutionary game the-
ory. The authors generalize this concept to rerouting dynamics,
where each agent becomes active at Poisson rates and performs
the following functions:

« Sampling - It picks a path P with probability o p. Although
a simple computation of this probability would be op =
1/m, where m is the number of active paths, in replicator
dynamics op = fp, which means that the probability of
sampling a path is proportional to the fraction of agents
using this path.

o Migration — An agent migrates from path P to path () with
probability u(lp, lg). For replicator dynamics p(lp,lg) =
max{(lp —lg) A, 0}, where A is a parameter used to upper
bound the probability, so that it does not exceed 1.

Hence, letting rpg be the rate at which the agent migrates

from path P to path (), we can write the following expressions:

rpQ = fP-0q - u(lp,lQ)
fr=>_ (rqp —7pPq).

QEPs

(42)

A solution to this system of differential equations (one equation
for each commodity) exists only if the involved functions /., o

and p are Lipschitz continuous, as stated by the Picard-Lindelof
theorem. It would be interesting if NEs are global attractors of
the solutions of the aforementioned system of equations. In this
case, the evolution of the game will converge to the NEs. Thus,
the concept of evolutionary stability is needed.

Assuming that at the initial state no link is unused and that
a single commodity exists, then a flow vector f is evolutionary
stable iff

(a) Itisa NE, and
(b) for all best replies f to f and f # f, ff(f) > fé(f).

A best reply f to a flow vector f is a flow vector that uses min-
imum latency path with respect to the latency induced by f. A
flow vector [ is essentially evolutionary stable if condition (b)
above holds and f differs from any best response f for at least
one edge. It is proved that NEs are essentially evolutionary sta-
ble for single commodity networks and that in terms of edge
flows, all replicator dynamics of the form of (42) converge to a
NE. Moreover, the authors investigate the effect of stale infor-
mation and calculate bound of the update intervals.

IV. GAME THEORY IN AD HOC AND SENSOR
NETWORK ROUTING

In the previous section we presented the routing models for
general networks, which refer to conventional networks in most
cases. Nevertheless, these models could be used to study ad-hoc
and sensor networks as well. A MANET could be considered as
a general network G(V, L), where V is the set of vertices (the
nodes) and £ is the set of links that connect the nodes. The first
thing that should be defined for a game is the players. In all
previous cases, the players were users that desired to send their
traffic from a source to a destination. Their strategies were the
paths that the traffic would follow, whether or not the traffic was
split among them. In order to achieve this, the usage of source
routing was silently assumed. Thus, the role of the nodes of the
network is to just route the packets as specified by them. Their
role was passive.

In the case of ad-hoc and sensor networks, though, it would
not be appropriate to define the players in a similar way. The
reason is that in these networks the role of each node is of para-
mount importance. What is more, since the nodes are devices
with limited power sources, energy consumption is considered
as the most critical parameter. This is rational since the network
connectivity is based upon the existence of nodes. The energy
depletion of some of them could result in network partition, a
situation that should be avoided at all costs.

For all these reasons, the investigation of ad-hoc and sensor
networks using game theory resulted in two great changes in
the methodology used so far: The players are usually the nodes
themselves and the utility function is highly related to the energy
consumption as well. In many cases, the term forwarding game
is used to specify a game where the nodes decide whether to for-
ward a packet for another node or not. Since each node wishes
to preserve its energy in order to be able to send as much traffic
as possible, forwarding a packet for another node is not ratio-
nal, at least at first glance. In the rest of this section we present
the most significant proposed models in order to examine the
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cooperation level of such networks and identify their equilibria.

A. The Packet Forwarding Game

The first work that applied game theory to ad-hoc networks
in order to study packet forwarding was [25]. In this paper, the
authors propose a policy that can be followed by the nodes and
results in a NE and a PO operating point at the same time. Their
contribution, though, is the proposal of a model based on game
theoretic terminology, in order to study the performance of the
network. We will describe this model extensively, as many later
proposals are based on it.

The model assumes a population of N energy-constrained
nodes (not all nodes participate in the network simultaneously)
divided into K energy classes with each class containing n;
nodes. Assuming that F; and L; represent the energy and the
expected lifetime of each class, then their ratio p; = E;/L; rep-
resents the average power constraint of each energy class. A
source initiates a session towards a destination node but it relies
on the intermediate nodes to forward traffic. Thus, it sends a
request to all the intermediate nodes and expects from them to
reply with a positive or a negative acknowledgment. Only if all
nodes respond positively, the session starts and the traffic flows
via these nodes. The time is considered slotted, with each slot
lasting for a session. A session is said to be of type 7, if at least
one node belongs to class j and the rest of the nodes belong to
higher energy classes.

Let A7 (k) be the number of relay requests generated by node
h for type j sessions until time k that have been accepted, and
BJ (k) the total number of relay requests made by node £ for

type j sessions until time k. Hence, the variable qﬁ?(k) =
A;L(k) / B{L(k) is the ratio of the accepted relay requests made
by node A for type j sessions until time k. In a similar way they
define 1/},(1] ) (k) as the ratio of relay requests for type j sessions
that node A itself accepted until time k. The authors also define
the normalized acceptance ratio (NAR) as

NAR = lim ¢] (k). 43)
k—o0

We can think of NAR as an indication of the throughput experi-

enced by each user for each session type.

The game players are the nodes and their actions correspond
to accepting or refusing the relay requests. Whenever a request
is accepted by all intermediate nodes, the payoff is considered
equal to unity. The utility of node h for type j sessions is equal
to

Uj = lim (Afl(lc) /k:) . (44)
Assuming that the probability that node & is a source in a type j
session is pil, then the total utility of node h is

Un=> nUi. (45)
J

The nodes are considered selfish and their only objective is to
maximize their total utility.

In order to investigate feasible operation regions, they assume
that each node uses a simple probabilistic policy for accepting
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relay requests. Let 7;; denote the probability that a node in class
i accepts a relay request for a session of type j. In order to keep
the model simple, the authors consider this probability as con-
stant and independent of any parameter, such as the source of
the session or the history. The authors prove that if the nodes
are rational (i.e., self-interested) then 7,; = 7;;, which means
that no matter what is the energy class that a node belongs to, it
accepts or rejects relay requests as if it was of the same class as
the session itself. A set of equations is provided that can be used
to derive the optimal value of 7;.

Although a PO point is feasible, this does not mean that the
game will result in this point. As mentioned earlier, the above
strategy is a stationary one. A node has a fixed probability for
accepting relay requests. Therefore, a node could deviate and
deny all the requests. This node would spend its energy only
in sessions initiated by it, while other nodes would forward its
traffic. Thus, a node has an incentive to deny all requests, no
matter how the other nodes behave. In consequence, the “al-
ways deny” strategy is a dominating strategy and in the end no
traffic will be exchanged at all. Hence, stationary strategies are
not appropriate in this case. For this reason, the authors pro-
pose a behavioral strategy, which is based on the past behav-
iors of the nodes, called generous tit-for-tat (GTFT). GTFT was
previously proposed [26] as a strategy that results in coopera-
tion in the non-cooperative repeated PD game. In TFT strategy,
each node cooperates at the beginning and then mimics the other
node’s action. In GTFT, each node mimics the other node’s ac-
tion in the previous game; however, it is generous from time to
time by cooperating.

In the case of ad-hoc networks, each node maintains two vari-
ables, ¢7, (k) and ¢ (k) for each session. Note that no explicit
information is stored for each node in particular, but only two
general variables that correspond to the past history as experi-
enced by each node. The proposed decision algorithm m-GTFT
(m for multiple relays) is the following:

o If wflj)(k) > 75 Or ¢,(1j) (k) > Ly; ,gj)(k) — € then reject,
o clse accept.
Therefore, node A rejects a request for a type j session in two

cases. In the first case (1/),(3 (k) > 7;;) node h has relayed more
traffic for session j than it should. In the second case (qﬁg) (k) >

L 1(1] ) (k) — €), the amount of traffic that other nodes relayed in
favor of node A is less than the amount of traffic that node A has
relayed for other nodes of this type of session. The parameter e
is a small positive number, thus node h is a little generous and
relays traffic for others even if they have not relayed the same
amount of traffic for the benefit of h. Finally, the parameter L;;
is inserted because when more than one relay is used, a node
plays the role of a relay for more time that it is a source of traffic.
It is proved that both GTFT and m-GTFT constitute NEs that
converge towards the PO operating points.

Although the results of the above work are very interesting,
the assumptions made are very strict. Nodes are assumed to
send a positive or negative acknowledgement to the source of
the packet, a methodology that is not reliable from the coopera-
tion point-of-view. What is more, the topology remains constant
during the transmission of the packet from the source to the des-
tination and all packet transmissions cost the same amount of
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energy. These assumptions can be considered unrealistic. Fur-
thermore, the dynamic nature of the routing decisions, as long as
the unreliability of the information provided by the other nodes
are not taken into account. Nevertheless, the contribution is of
major importance, as the authors provided a means of investi-
gating the performance of selfish nodes participating in the for-
warding game.

In [27], Urpi et al. attempt to describe a more general frame-
work than the one previously presented. Again, the nodes con-
stitute the players of the game and are divided into K energy
classes. They are assigned with a parameter that represents how
critical the energy consumption is for them. Unlike [25], the en-
ergy class of each node is not known to the rest of the nodes.
Thus, players have only beliefs (i.e., distributions) about the
other players’ energy classes (a game with imperfect informa-
tion).

A node b is assumed to maintain the following information at
the beginning of frame k (time is slotted):

« The set of its neighbors Ny, (k).
o Its remaining energy By, (k).

+ The number of packets that the node generated and that
have to be sent to its neighbor b T?(k).

» The number of packets neighbor b forwarded for the node
during the previous frame F}*(k — 1).

o The number of packets that the node received from neigh-
bor b as a final destination R (k — 1).

« The number of packets that the node received from neigh-
bor b as a final destination, and the neighbor was the source
of the packet R (k — 1).

The action of each player in the game is to decide how many
packets originated by himself will be transmitted to each one of
its neighbors during the current frame and the number of pack-
ets he will forward for each one of his neighbors. The payoff
of a node is a combination of two parameters. The first one is
the ratio of the packets the neighbors forwarded for the node or
received as a final destination and the number of packets sent by
the node (wy). The second one is the ratio of the sent packets to
the packets that the node desired to sent (gx), both calculated in
each time frame. Each player’s energy class e(i) is considered
secret and is not known to the other players. The dynamic na-
ture of the ad-hoc network is taken into account as well by using
a discount parameter §. The higher the mobility of the network,
the smaller the parameter §. All these parameters are used in the
following expression:

Ole(i)Wi(tk) + (1 - ae(i))Gi(tk) (46)
where
Wity = 4 VEh Sl FEto) >0
0, otherwise
if 3 TI(t
Gi(ty) = {g(t’“)’ ! ZygNi(tk) 7 (te) 48)
0, otherwise.

The authors use the above model to prove some very interest-
ing theorems. First of all, the intuitive conclusion that it is not

possible to force a node to forward more packets than it sends
(on average at least) without a cooperation enforcement mecha-
nism. They also show that it is possible to enforce a cooperative
strategy only for low-mobility networks or networks exchanging
huge amount of traffic during each frame, if non-cooperation is
punished from other nodes by not forwarding packets for this
node for some time. They conclude that a cooperative strategy
can be fruitful only if a significant percentage of the nodes adopt
it. Finally, they propose a strategy for a simple two player game
with two energy classes where initially every node forwards
all packets and then cooperates only if the other node cooper-
ates too, otherwise it punishes the other node by not forwarding
packets for it, until it starts cooperating.

A difference worthy of note between this model and the one
in [25] is that in this case nodes prevent themselves from trans-
mitting a packet if the probability that it will not reach the des-
tination is high. Another significant difference is that no global
knowledge is assumed. All parameters depend on information
that can be locally collected and easily evaluated, leading to a
more realistic model.

B. Dynamic Bayesian Games

In order to extend the above models to form dynamic stage
games with incomplete information, Nurmi [28] proposed a new
one where the decisions are not taken simultaneously, as in the
previous cases. This discrete time model demands from each
node to keep track of all packets it has sent in each time slot to
each one of its neighbors. Again, each node has a belief about
the other nodes’ energy classes. A source uses the beliefs about
the forwarders’ energy classes to decide if it will send a packet.
Similarly, a relay node uses its belief about the source’s energy
class to decide if it will forward the packet or not. However,
these beliefs are not arbitrary; they are dependent on the packets
sent by each node.

What is interesting in this model is that the strategy of each
player (the number of packets that are sent) is not fixed or pre-
determined according to an algorithm, but it is a probability,
whose distribution depends on the history of the game, the en-
ergy classes of the nodes and the actions of other nodes. The
information collected by each node about the other nodes’ status
increases with time and the beliefs are updated using the Bayes’
rule. The subgame perfect and perfect bayesian equilibria can be
used to analyze the model under specific functions. The author
argues that his proposal can be used to analyze routing algo-
rithms, as the utility functions and the probability distributions
addressed in the model are not specified.

More specifically, the time is considered discrete, with each
time step denoted by iz, kK = 1,2, - -. The players of the game
are the nodes, forming the set N' = {1,2,---, N}. For a node
i € N, its set of neighboring nodes (nodes that are within its
communication range) is denoted as I';. Each node has an en-
ergy class 6;(ty), which corresponds to its energy level at each
time step. Node % generates g; (¢ ) messages at time step tx, but
the messages-packets that are actually sent to the network are
denoted by s;(fr) < g:(tx). Every node has an action history
hi(te) = {s:(t1), si(t2), - - -, 8:(tk—1)}, @ vector containing the
sent messages at all previous time steps. A message is broad-
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casted by its source to the entire neighborhood and each neigh-
bor individually decides whether to forward the message or not.
We denote the number of packets neighbor j forwarded for node
i at time step t by f; (tr). The number of packets that neigh-
bor j forwarded for source ¢ at every time step forms a vector
Bi(tx) = (£}(t2), £i(t2), . Fi(t—1)) and the history profile
is the vector E; (te) = (ha(tx), B%(tx)). The source node does
not send all its traffic. It decides how many packets to send ac-
cording to its belief about the energy classes of its neighbors,
which is rational since if all its neighbors have depleted their
energy, no packet will be forwarded and thus the source con-
sumes energy unnecessarily. However, provided that the energy
classes of the nodes are private information and hidden from the
rest of the players, every node 7 has a belief about another node
J energy class, which is represented by a probability distribution
7 function:

el (t0) = p (6t 10302, T 1) (49)
where 0; (tx) is the energy class of neighbor j forwarding pack-
ets for node ¢ at time step #z.

Similarly, the decisions of the neighboring nodes depend on
their beliefs about the energy class of the source, which is a
probability distribution function ¢ (t;) as well. These probabil-
ities depend on the number of packets send by the source, hence

9i(t) = p (08103 (1), By (ta), si(te)) . (50)
Hence, the joint belief system for nodes ¢ and j can be repre-
(,uz (te), ¢} (tk)) . Each sender-forwarder
pair play a Bayesian game, so each node participates in
more than one such game at the same time. What is more, a

node can be a sender in a game and a forwarder in another
one. The actions of the players are defined as probabilities

sented as 7% () =

px(axm; (tx), 0z), where a, represents the action, which is the
number of packets sent or forwarded. The vector ﬁ; = {u;, uf})
consists of the utility u; of the sender 7 and the utility of node j
forwarding packets for node 7 u; At the end of each time step,
the belief system is updated using the Bayes’s rule as follows:

p(RS(tk ), SHER0% () )p (05 (t)
p(Ry(tr), f(t))

The concept of Bayesian equilibrium and sequential equilibrium
can be used to analyze the game and find its equilibria. If the re-
striction of the strategies to only one stage (one time step) con-
stitutes a NE, then the game is subgame perfect. Now, if the
players’ actions, restricted to one stage, are optimal given the
beliefs of the players at the beginning of the stage, then these
actions form a perfect Bayesian equilibrium (PBE). It is proved
that this model admits a PBE. The same author proposes in [29]
a more specific set of strategies for the forwarder and the sender
that are proved to converge to a sequential equilibrium and that
at least one such equilibrium exists. The difference is that the
forwarders are assumed to lack beliefs about the energy class of
the source.

pl(tepr) = (51)

27%

C. Topology Aware Approaches

The forwarding game has also been addressed in [30], where
the authors attempt to answer the question whether cooperation
may arise from the network on its own or an incentive mecha-
nism is required, by taking the topology into account. The play-
ers are the nodes and each node £ selects a strategy for each
time instance, i.e., the probability py, (k) of forwarding packets
for other nodes. The players do not distinguish between different
nodes and their decision on the forwarding probability is applied
to every route that includes the node. The payoff of each player
is the sum of the gain of delivering packets to destinations and
the loss of forwarding packets for other players. Nodes update
their information in every time slot according to their experi-
enced throughput in the previous one and choose their coopera-
tion level for every slot. An infinite number of different strate-
gies can be defined within the model, for example the “always
defect,” “always cooperate,” TFT or GTFT.

A metamodel is introduced to formalize the evolution of the
cooperation levels of the nodes. The relationship between the
nodes is represented by a dependency graph and a machine with
inputs and outputs is assigned to each vertex of this graph (cor-
responding to nodes). The internal of each machine consists of
a multiplication gate that multiplies the inputs. This product
is passed to a gate that implements the strategy function of the
node the gate corresponds to. The result is the output, which is
passed to the other nodes as input via the links of the depen-
dency graph. In this way, the entire network is modeled as an
automaton with discrete states that correspond to the coopera-
tion levels of the nodes. Letting the automaton operate in time
provides us with the evolution of the states of the machines in
time, which is the cooperation level of the nodes.

After this new model introduction, the authors focus on find-
ing possible NEs. In order to model a finite game, an infinite
game with a discount factor 4 is used. The final payoff is com-
puted as a weighted sum of the payoff in each time slot. The
weight is the discount factor to the power of the time slot index,
so that the most important values are the older ones, as indicated
in (3). Using the game mode! and the metamodel for stationary
networks, they confirm that “always defect” is a NE, as previ-
ously stated. However, they prove that another interesting NE
may exist. Assuming that node f is a relay node on a path r
from a source src to a destination dst, then all nodes play TFT
isaNEif:

o There is always a dependency loop between h and the src
of every route r where £ is a forwarder.

« The maximum forwarding cost for node % on every route r
where it is a forwarder must be on average smaller than its
possible future benefit.

A similar equilibrium exists in the case a node is the source of
more than one routes. Although theoretically cooperation may
arise in a stationary network, the authors argue that in practice
this is rarely the case. Thus, for stationary networks a coopera-
tion enforcement mechanism is almost always necessary.

Using the same methodology as in {30], the same authors
study the mobile case in [31], using the benefit-cost utility func-
tion and a topology that constantly changes without considering
the energy levels of the nodes. They use 5;(k) to denote the
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number of packets that were originated by node 7 and were suc-
cessfully sent to the destination until time & and ; (k) to denote
the number of packets node i forwarded for other nodes. Their
ratio p;(k) = B;(k)/vi(k) is called interaction ratio at step k.
The utility function is defined as:

o) - B0l
where B and C are two constants representing the benefit of
successfully sending a packet and the forwarding cost respec-
tively, and each node’s objective is to maximize the expected
value of this cost as the time tends to infinity. The strategy of
each player is to forward packets when the interaction ratio is
above a specified threshold x;, otherwise the node refuses to co-
operate. Varying the threshold «;, different strategies could be
modeled. In general, x; is considered a function of the average
number of forwarders per source-destination pair. If a player
belongs to more routing paths than the average number of re-
lays per path, then generosity is required. Since this condition
happens more often when mobility is low, the main conclusion
of this work is that the higher the mobility level, the easier the
emergence of cooperation in a mobile ad-hoc network, or the
less generosity is required from the players.

This result, though, seems contradictory with the results in
[27], where the authors claim that cooperation enforcement is
easier in low-mobility networks. They conclude that when us-
ing only local information, some time is needed in order to suc-
cessfully punish a node for misbehaving. And this can happen
only when nodes do not move very fast and the neighborhood re-
mains constant for some time. To explain this disagreement, we
need to pay more attention to the models and especially to the
strategies. In [27] the authors assume that every node maintains
for each of its neighbors the number of packets forwarded for
the neighbor’s sake and the number of packets the neighbor for-
warded for the node. What is more, a misbehaving node is pun-
ished by its neighbors by not forwarding its packets for some
time. Thus, if the mobility is low, the node has enough time
to punish a misbehaving neighbor. On the other hand, in {31]
the authors assume that each player maintains information about
the history of the game; however, players do not distinguish be-
tween the nodes. A node needs to be generous if it is a forwarder
to more routing paths than the average number of forwarders per
path. The higher the mobility, the less this situation lasts. Con-
cluding, the two works are not contradictory. They reveal that
the strategy space of the game has a great influence in the con-
ditions required for cooperation.

(52)

D. Minimax Games

Using a different approach, the authors in [32] propose the
modeling of an ad hoc network routing as a two-person zero-
sum minimax game between the set of nodes and the network.
In a minimax game, the players’ target is to maximize the guar-
anteed minimum gain. According to their proposal, all nodes
in the network constitute a single player (the set-of-routers) that
runs the routing protocol or technique. This player’s move con-
sists in sending all the routing messages specified by the rout-
ing protocol. The second player (the network) changes the net-
work topology by deciding which link between nodes will be up

and active. The set-of-routers wins the game if all nodes main-
tain a correct view of the network when the game ends. On the
other hand, the network wins if the nodes are mistaken about
the network status and are unable to obtain the correct one. The
cost function is a lexicographic ordering of the following mea-
sures:

o The final state’s inconsistency of the network topology
compared to the actual state of the network

« The amount of traffic the routes used.

The network tries to maximize the cost function while the set-
of-routers tries to minimize it.

In order to evaluate the model, the authors implemented three
different routing techniques, the link-state routing, the reverse-
path forwarding (RPF) routing and the distance vector routing,
for a 7 node network. The target of the modeling was twofold.
The first goal was to reveal if a protocol is sound or not. The
term soundness refers to the routers having or being able to ob-
tain a correct view of the network topology. The second goal
was to analyze the protocol’s performance, namely the speed of
convergence and the overhead induced.

Using a custom tool they developed, the authors first analyzed
soundness. They found that RPF was always sound while the
distance vector technique suffers from the well-known count-to-
infinity problem, even for the split horizon variant. Regarding
overhead, they confirmed the common belief that flooding needs
more overhead that RPF. In terms of convergence, it was found
that link state RPF performs better than distance vector and link
state flooding.

E. Analysis of Reputation Enforcement Mechanisms

In [33], the authors attempt to analyze the CORE protocol
{or any other history-based protocol) by means of game the-
ory analysis tools. CORE [34] is a reputation-based cooperation
enforcement mechanism. Every node monitors its neighbors’
behavior and rates it. Only nodes whose reputation is greater
than a predefined threshold are served, while the other nodes
are gradually isolated unless they alter their behavior and start
cooperating. Two approaches are used; a cooperative and a non-
cooperative one.

The authors propose to model the CORE algorithm as a mech-
anism that introduces identical ERC types in every node in the
network and to study a static PD game with ERC preferences.
In ERC [35] theory the utility of an agent is not only based on its
own absolute payoff, but also on the relative payoff with respect
to the total payoff of all agents. So, a node’s utility function
comprises two parts. The first one is the absolute payoff and the
second one is the relative payoff, computed with respect to the
payoff of all other nodes in the network. When the number of
cooperating nodes is &, the payoff to a non-cooperating node is
B(k), while an additional cost C'(k) is subtracted when the node
cooperates, hence its payoff is B(k) — C(k). The following as-
sumptions are made:

e Blk+1)-B(k)<C(k+1)

(or Blk+1) — C(k + 1) < B(k)).
e« NB(k+1)-(k+1)C(k+1)> NB(k) — kC(k).
« Blk+1)—C(k+1) > B(k) ~ C(k).
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The first one specifies that playing cooperatively reduces the ab-
solute payoff, regardless of the number of cooperating nodes.
Hence, this assumption alone does not provide an incentive
for cooperation. So, the two other additional assumptions are
needed. The second one denotes that the higher the number of
cooperating nodes, the greater the accumulated payoff for all
users, which is a desired result from the social point of view. Fi-
nally, the third assumption specifies that from the point of view
of a single node, the more nodes cooperate in the network, the
larger its payoff. The analysis of a one-shot N-person PD game
shows that 1) there is at least one equilibrium where everybody
defects and 2) there is a NE where at least half of the nodes
cooperate.

Considering a cooperation game, the authors prove that there
is a unique equilibrium as long as at least one node’s pay-
off is the result of its absolute payoff. This means that if the
ERC preferences are introduced, the cooperation effort does not
change. Thus, CORE assures that a coalition size of at least
half of the nodes exists. A more realistic modeling of CORE
demands the usage of non-cooperative game theory. Based on
a non-cooperative iterated PD game model, it was proven that
TFT strategy is in fact a special case of the CORE strategy. Fur-
thermore, CORE is robust against imperfect knowledge about
the other nodes’ moves.

Milan et al. investigate in [36] the effect of packet collisions
on the cooperation level achieved by reputation based mecha-

nisms. According to the model, node’s ¢ probability of dropping
(k)

a packet at time k is p; ', its payoff for playing the strategy sgk)
is u; = 6;01(»]“) - ozp(k)

—2

and the discounted payoff of user 7 is

U;=Y u 0<i< 1,
k>0

(53)

In order to model packet collisions (due to the mac layer opera-
tion), the iterated PD with noise model is used [37]. The authors
prove that for a linear network, the TFT strategy is not enough
for the mutual cooperation to emerge. On the other hand, us-
ing GTFT, mutual cooperation is a subgame perfect equilibrium
if (8/a)/(1 —X\)? < & < 1, where X is the generosity fac-
tor. In other words, the higher the traffic in the network, the
more far-sighed the nodes have to be, in order to achieve coop-
eration. This is equivalent of requiring each packet to have a
sufficiently high value with respect to the transmission cost. For
a more realistic topology, the above expression is transformed
to the following:

B
2n<6<1

TSy 4

where 7 is the number of potentially colliding neighbors. Addi-
tionally, they propose two other strategies, the one-step trigger
(OT) and the grim-trigger (GT). Both of them achieve coopera-
tion with less strict requirements than GTFT. However, this re-
sult comes at the expense of the potential serious performance
degradation.

Based on the previous works, Altman et al. propose in [38]
a less aggressive punishment policy than in [25]. The model as-
sumes that a fixed forwarding probability -y; is selected by a
node for all packets, independently of their source. The utility

function includes three parts: The reward as a source, the re-
ward as a destination (which was not previously considered) and
the loss as a forwarder. Each node is able to compute the equi-
librium forwarding probability; however, in the absence of an
incentive mechanism, this probability is zero. Thus, a punish-
ment mechanism is proposed. According to it, if a node is found
to decrease its forwarding probability, then all other nodes de-
crease the forwarding probability for the packets whose source
is the deviating node. A distributed implementation of the al-
gorithm is also provided. The model lacks general applicability,
since the forwarding decisions are assumed independent of the
source and the dynamic structure of the routing decisions is not
taken into account.

A generalized approach for packet relaying is presented in
[39]. The strategy for each node is to decide if it will forward
packets or not. A reward mechanism is assumed, that is a node 7
gets its reward r for enforcing node j to forward packets. Packet
forwarding induces a cost of s for the forwarding node. The
interaction between the nodes is assumed bidirectional. For a
single-stage game, the equilibrium corresponds to the refusal of
participation from all nodes. For the repeated game, the authors
map the action selection to a state transition process modeled
by a Markov chain when the choices are memoryless, i.e., they
depend only on the current state to select the next one. Within
this setting, the always forward strategy is an equilibrium too.
Generalizing the model, a probability p of forwarding a packet
is decided by every node. The benefit of a node at time ¢,, can
be expressed as bf" =r. pt_"l. —s- pﬁ". When the game is played
repeatedly, the total benefit will be

B=) &"(r-p—s-pl")

n=0

(55)

where § is the discount factor.
Using this simple framework, many strategies can be mod-
eled. For instance, the TFT strategy corresponds to a probability

i )L n =10
pi Eli_l, TL>0.

(56)
Modeling other strategies in a similar way, the authors provide
the necessary conditions that » and s should satisfy, in order for
these strategies to be beneficial.

F. Inter-Cluster Routing

Kannan et al. [40] formulate a game theoretical model to
study inter-cluster routing in sensor networks. In particular, they
consider the effects of path length and path energy cost at the
same time. Although the shortest path is generally desirable, it
is not the best option from the energy efficiency point of view.
The model consists of a set of leader nodes (the cluster-heads)
and sensor nodes. The players are the sensor nodes who should
decide to forward or not a packet to another sensor for each pair
of leader nodes. Based on the forwarding decisions of the sen-
sor nodes, a path P is formed for every source-destination pair
of leader nodes. The payoff of sensor ¢ forwarding the packet to
sensor j is defined as m; = E; — EL(P), where Ej is the resid-
ual energy of sensor j and L(P) is the length of the path P. £ is



282 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 10, NO. 3, SEPTEMBER 2008

a non-zero constant parameter that represents the portion of the
path length cost that will be paid by sensor ¢. In this case, the
NE corresponds to the optimal length-energy constraint (LEC)
for the given pair. The authors propose a distributed implemen-
tation of a protocol that calculates the optimal LEC.

G. Alternative Utility Functions

Based on the work of [25], the authors of [41] propose a
Pareto utility function. They define two parameters, the av-
erage amount of throughput per unit of energy expenditure
Ul (k) = AJ,(k)/p; and the average amount of relay rate per
energy expenditure C (k) = Bj.(k)/p;. The first one defines a
measure of the help provided by others to node h and the sec-
ond one corresponds to the assistance provided by node A to
other nodes. Assuming that the probability of accepting a relay
request is 7;, then the average energy efficiency per slot spent
by node h as a source when participating in a type j session is

rie) = N lim UJ( )
11 &
=N Y qm) > 6mipy,-ep)t T (5T)
m=1 D1, 4D

where 1/N is the probability that node h is a source, g(m)
denotes the probability that the source requires m relays and
6(m;p1,---,p;) is a probability function conditioned that the
type j class has m relay nodes. The number of selected nodes in
classes 1, -, 7 are denoted by p1, - - -, p;, respectively. Finally,
7P FP3 i the probability that all relay nodes accept the relay
request. In the case of a relay node, the energy efficiency per
slot has the following form:

(T)_-——qu Z f(m

P1,5P;

) P1+ +p]

= Lipy, - p5)T

(58)

Now, the average energy per slot consumed by a node when
participating as a source in all types of sessions is computed by
I‘(s) Z j=1Pj I‘§ h) and a similar expressmn exists for the case
of a relay node. The PO probability 7 can be computed if we
consider the limitation 0 < 7+ < 1 and the fact that the equation

I‘(s) + I‘;h) = p; should be true forevery j € 1,-- -, K.

H. Multi-Domain Routing

An interesting point of view is presented in [42]. The authors
cope with the problem of packet forwarding in large scale sensor
networks, where not all nodes are managed by a single authority,
instead multiple authorities are involved, i.e., a multi-domain
network. Following the work of [43] where multi-domain net-
works are examined, the authors investigate the routing problem
under the framework of evolutionary game theory. Their exam-
ination differs from the classical concept in the sense that the
most important part in their model is not the node itself but the
class. A class is defined as a set of sensor nodes belonging to
the same administration authority and having full cooperation
among them. The time is slotted and in the beginning of each

slot, every class decides whether to cooperate or not with all
other classes. In the case both classes cooperate, each one gets
areward R = v — (3, where 7y is the gain of cooperating and
is the cost of forwarding other classes’ packets. If both defect,
then both get a reward of zero. Now, if only one cooperates,
the cooperating class gets S = —/, as it gains nothing, while
the non-cooperating class gains T' = +, as it has no cost. This
description resembles that of PD game, where each player ei-
ther cooperates or defects. Among all possible strategies, the
authors consider only two of them: Always cooperate (57 =
{C,C,C,---.}), and always defect (S; = {D,D,D,---}).
The forwarding game has now the form of the iterative PD game
and can be examined in a similar way.

L. Imperfect Information Repeated Games

A parameter that is usually omitted in most of the related
works is that of imperfect knowledge. In a real ad hoc or sensor
network, the multihop nature of communication combined with
a high-error-rate physical channel may frequently result in lack
of perfect knowledge. This issue is taken into account in [44].
The authors use a model of two players. One player is the source
of a packet and the other is a relay node. Each player has two
possible actions, F' (forward) and D (drop). Each player is in-
formed about the other player’s action via a private signal from
the set Q@ = {f,d}. Let p; denote the probability that an F’
function is considered as D and p. denote the probability that
a D action is considered as F' by the other player. The cost for
packet forwarding is ¢ while the gain for the forwarded packets
is g. The expected payoff u;(«) for player ¢ when the strategy
profile is « and the observed actions are w; is

Z Ui, wi, a_;)Prob{w;|a_; }

wiEQ

(59

uwi(a) =

where w; is the utility function of player 4. For the static game,
the NE is (D, D), as previous works have mentioned too, while
the best outcome (g — ¢, g —c) is achieved for the strategy profile
(F, F).

Now, when the game is repeated, using the discount factor §
and the private history h} for node 7, the expected payoff is given
by the following expression

ee]

uile) = (1-68) Y dtul (ot (hD),

t=0

as(hb))  (60)

where w! is the observation of player ¢ at time ¢. If the informa-
tion of all players would be perfect, then the Folk theorem could
be used to find an equilibrium that would enforce a cooperation
strategy for a discount factor close to 1. However, this is not
possible in the case of imperfect information.

The effect of imperfect information is examined in [45] as
well. The players of the game are the nodes that participate in
the network. If a; is the action of player ¢ and P is a random
public signal with value p, then the utility U;(a,p) of player
1 will depend on both of them and in its simplest form can
be expressed as the difference between the benefit o; (p) corre-
sponding to the packets forwarded from other nodes and the cost
Bi(a;) of forwarding packets for other nodes. Letting F'(p;a)
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denote the distribution of parameter p, influenced by the action
profile of all nodes’ a, the expected utility 7; for node ¢ will be

™, = / Ui(ai,p) dF(p; a). (61)
peEQ

Moving from the static game to the repeated game, we denote
by o;(t) the strategy of node ¢ at each stage ¢ of the game and
by o(t) the joint strategy vector at stage ¢. The repeated game
payoff for node 7 is calculated using the discount factor ¢:

o0

vi(o) = (1-8)Y_ 8 'mi(o(t)).

t=1

(62)

A strategy o* = {0, 0"} is a perfect public equilibrium (PPE)
if for all stages after a stage ¢o:

Yo!.

vi(0") 2 vi(o},02,), Vo (63)
The authors propose a method to reduce the repeated game to
a single stage game, so that the analysis becomes easier. They

express the expected payoff as

7 (a) = (1 - )mi(a) + 6 / wi(p) dF(pra)  (64)

peQ

where w;(p) is a continuation payoff function that maps every
possible value of the public signal to a payoff real value. Then,
the repeated game payoff can be written as

vi{o) = (1 = §)m;(a) + 6 w;(p) dF(p;a).

PEN

(65)

The above expression reveals that the strategy o is a PPE if the
action profile a is a NE at the first stage of the game. Then,
the authors propose the GT strategy, which corresponds to the
strategy where a player cooperates provided that the public sig-
nal exceeds a threshold value. Thus, when the public signal is
below this value, the player switches to the NE of the one-stage
game. The authors use the aforementioned analysis to examine
this strategy and prove that it is a PPE, under conditions that
are further studied by means of simulations. The contribution
of this work is that it provides a methodology to model repeated
games with incomplete information by using a public signal and
study them in a relatively simple way by taking into account the
NE of the corresponding single stage game.

J. Multicast Tree Formation

The construction of an optimal energy-constrained reliable
query routing (RQR) tree in sensor network is studied in [46].
The sink node broadcasts a query to all sensors and a multicast
tree is constructed, which will be used from the sensors to send
back to the sink their data matching the query’s requirements.
Along this path, data aggregation takes place.

The players of the game are the N sensors. Two types of cost
are used. The communication cost ¢;;, which corresponds to the
energy needed for node ¢ to reach node j and the latter can fully
recover the data, and the participation cost PC;, which refers
to the cost of participating in the routing tree and is a function
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of the remaining battery life, the traffic flow through the node
and the currently consumed processing power. The strategy of
node ¢ is a binary vector s; = {s;1, 842, -, S }, Where s;; = 1
(si; = 0) corresponds to sending (not sending) a data packet to
node j. Although this is a pure strategy, a mixed strategy can be
defined as well. Since usually a node forwards packets to only
one of its neighbors, the vector s; has all its elements equal to
zero except one. As a consequence, the strategy profile for all
nodes s represents a tree originated at the sink node.

Since reliability is considered as a critical issue, the authors
model a node failure by assuming that a sensor 4 can fail with
probability (1 — p;) € [0, 1). Every sensor is interested in send-
ing its data to the sink node via the constructed tree 7, how-
ever, driven by its selfishness, its objective is to achieve it with
the minimum possible cost. Its benefit X; will be a function
of the reliability level R; of the path from ¢ towards the sink
and the expected value g; of the information that can finally
reach the sink. A value v;, 7 € {1,2,---, N} is assigned to
the data retrieved by node 4 and match the query’s attributes.
Thus, g, = gz’(Ub U2, ',’UN) and Xl = gi(vl, V2, ey UN)Ri-
The benefit is modeled via two functions:

Vi=vu+) Y (66)
JEF;

Vit =vi+ ) niV; (67)
JEF;

where F; denotes node’s 7 parent node in the tree 7. Finally, the
payoffs are given by
X~ (¢i; + PCy), ifieT
T
0, otherwise.

The difference between the two models is that the second one
takes into consideration the reliability of the path followed until
it reaches node ¢. Thus, its choice will be affected not only by
the reliability level of its path towards the sink, but also by the
reliability of the path followed so far to reach the node. Thus, the
second model has some kind of “memory,” while the first one is
only interested in the data reaching a node, where the decision
depends only on the reliability of the ongoing path.

The well known concept of NE in this case corresponds to
the optimal RQR, where every node gets the maximum payoff,
provided that it does not negatively influence the payoff of any
other node, resulting in a suboptimal performance. The first ben-
efit model results in less but more reliable equilibrium paths than
model II, because it permits more edges to become part of the
routing tree. Although the computation of the equilibrium paths
is generally difficult, the authors propose a method to find the
optimal paths in polynomial time when geographic routing is
used.

K. Auction-Based Approaches

Another popular way to model ad-hoc network routing is by
means of auction theory [47]. In [48], the authors propose a
mechanism for route discovery and route maintenance (Ad hoc-
VCG) based on the Vickrey-Clarke-Groves (VCG) auction [47],
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where the payment for a good includes the externality the win-
ning bidder imposes to all other bidders. Each time a source
has packets for a destination and a new path should be estab-
lished, an auction takes place. Every node declares its own cost-
of-energy (the cost assigned by a particular node to every unit
of energy spent) c¢; and the transmitted power PF™. A set of
rules is applied for forwarding route requests. The destination
node collects all the possible paths and decides which one is
the shortest (SP = {01,092, --,0%}). Then, it computes the
payment M, to each intermediate node o; of the shortest path,
using (69):

M; = |SP™9| ~ |SP| + ¢, PR | (69)
where |SP| is the total cost of the shortest path, |SP~7¢| is

the cost of the shortest path if node o; is excluded from the
set of nodes, c,, is the cost-of-energy declared by node o; and
P}};fgi 4, 18 the minimum power required for node o; to reach
the next node on the shortest path ¢;1 1. The authors prove that
every node declares its true cost-of-energy and its true emission
power, and that the mechanism they propose is truthful in gen-
eral.

An interesting observation in this model is the overpayment.
The payment to every intermediate node is always higher than
their forwarding cost. The additional amount payed to an inter-
mediate node depends on its contribution to the decrease of the
total cost of the path. The authors prove that the ratio of the total
overpayment cost over the true cost of the shortest path is up-
per bounded. However, the drawbacks of their proposal is that
the communication sessions should last for long time and the
routing paths should not change a lot during a session. Another
disadvantage is the excessive overhead required, in order for the
destination to obtain information from the entire network.

Extending this work, Wu et al. [49] propose the usage of
double auctions. The Ad hoc-VCG is suited for single source-
destination pairs, in a “‘one-to-many” concept. However, the au-
thors suggest that it would be more realistic to assume that in
real ad hoc networks, a “many-to-many” relation exists, as many
source-destination pairs compete for the available routes and re-
sources of the network. Therefore, they propose the usage of
modified double auctions. Their philosophy is to be able to sub-
mit a bit asynchronously and to permit counteroffers.

Ji et al. [44] describe an auction for ad-hoc network routing
following a different way. Instead for each particular node to be
the bidder, they assume that the bidders are the available routes.
The players of the game are the nodes and each node can only be
of one of three types during a communication session: Sender,
destination, or relay. Nodes are selfish and their intension is to
always maximize their payoffs. The source-destination pair on
one hand and the nodes on all the possible routes on the other
hand constitute a non-cooperative game. Since the private type
of a node is not known to the others, the game is with incom-
plete information. As previously mentioned, the bidders are not
the nodes themselves but the available routes. In this way, the
sender may exploit path diversity to increase its gain. The au-
thors provide both the static and the dynamic game definition.

A different approach for the auctioneer is proposed by [50].
Every node in the network organizes an auction offering its re-
sources (usually the bandwidth). The senders bid for the re-

source of the nodes, in order to form the paths towards the des-
tinations. A path will only be available to a sender if it wins the
auctions of the intermediate nodes. The bandwidth of each node
is divided into pieces and the bidders get the percentage they
want at the price of their bid, starting from the sender with the
highest bid, until the available bandwidth is exhausted.

In contrary to previous works, the authors of [51] argue that
it is very hard to apply VCG pricing to ad hoc networks and
inter-domain routing. More specifically, the authors discuss two
cases. The first one is the case of resource constraint ad-hoc net-
works, where the application of VCG auctions with N players
requires solving N + 1 optimization problems in order to find
the amount the traffic sender should pay. However, these opti-
mization problems are usually hard to solve for general topolo-
gies. The second case refers to inter-domain routing, where four
properties should be applied at the same time: Incentive com-
patibility, efficiency, individual rationality and budget balance.
The authors conclude that it is not possible to achieve all four
of them at the same time, for networks without resource con-
straints. The reason is that the sum of subsidies needed to be
payed to the forwarding nodes is higher than the sum of charges
payed by the senders, which means that an external resource is
always needed to inject money into the network, which is not
realistic. As a result, the authors propose to relax one of the
previous constraints, namely efficiency.

L. Pricing Game Models

In [52], the pricing game in an ad-hoc network of one source
and one destination is studied. A source src¢ wants to send data
to destination dst at a rate R, using intermediate nodes as re-
lays. For a link (7,7), ¢ is the predecessor of j and j is the
offspring of ¢. For an arbitrary node i, its set of predecessors
is P; and its set of offspring nodes is O, and f;; represents
the flow on the edge (4,7). A given flow vector f is a rout-
ing of a session if it satisfies the flow conservation constraints:
Zheos fsh = Rs, Y _pep, frw = R, and for eachrelay node 4,
ZhEPi fri = Zjeoi fij = ri, where r; is the incoming flow
rate at 4. Each link (7, §) is associated with a strictly increasing
cost function D;;(f;;) and it is private information to nodes %
and j only. The network’s total cost is then ) (ir)) Dij(fij) and
the social optimal routing is the one that minimizes this cost.
However, the source and the relays behave selfishly. The pricing
game constitutes in each relay 2 announcing a charging function
P!'(fri) specifying the payment it demands if node h forwards
data to 4 at rate fp;. The pricing game begins with each relay
declaring its bid to its predecessors. Upon reaching the source,
the latter decides on an flow allocation that achieves the mini-
mum cost. When a relay receives the payment and the corre-
sponding traffic, it allocates the incoming traffic to its offsprings
in a way that minimizes the total payment. The payoff for each
relay is the profit obtained by serving the traffic. Using non-
linear charging functions instead of constant unit price the au-
thors claim to lead to a much richer set of results and that the
social optimal point always corresponds to an equilibrium. Nev-
ertheless, inefficient equilibria can always exist. What is more,
they demonstrate that the price of anarchy due to multihop com-
munication is unbounded.

A model that attempts to incorporate packet loss probabil-



PAVLIDOU AND KOLTSIDAS: GAME THEORY FOR ROUTING MODELING IN ...

ity along with imperfect knowledge is proposed in [53]. In this
work, the authors are based on the Aoyagi oligopoly game,
modifying it to correspond to the characteristics of multihop
wireless networks. The game consists of two kinds of phases,
collusion and punishment. The game starts with a collusion
phase. The players select their prices p; and privately observe
their own demand d;, which depends on the price profile p =
{p1,p2,---pn}. At the end of each stage, each player is to
make a public report following a particular rule. The rule corre-
sponds to specifying if the demand of every node is higher than
a predefined threshold. If the reports are unanimous, the game
continues to the next collusion stage. Otherwise, a punishment
phase begins. Hence, for each player it is desirable not to en-
ter the punishment phase, but also to maximize its profit. The
threshold m* that maximizes the probability of unanimous re-
ports is the collusive reporting threshold and corresponds to a
price profile p* where all players collaborate. If a set of expres-
sions is satisfied, we can set a threshold that would correspond to
an equilibrium price profile, where no deviation would be ben-
eficial. The authors propose to draw an analogy between prices
and demands to packet loss probability and received packet
count respectively, in order for the model to be exploitable in
the wireless multihop networks setting. However, since a global
signal is not possible, the reports and punishments are limited
in local regions. Relay nodes actually make a mutual agreement
on the packet loss probability and the authors prove that the cor-
responding reports on exceeding their received packet rate are
truthful.

M. Flooding Models

Attempting to model flooding in ad hoc networks, Wang et al.
in [54] define the forwarding dilemma game. The players are the
nodes receiving a flooding packet and the game is played each
time a node receives such a packet. The available strategies S;
are either to forward the packet (S; = 1) or to drop it (S; = 0).
If a node forwards a packet, it bares a cost f;(c), where c is the
forwarding cost and f(-) is a decreasing function. If the packet
is finally forwarded by any of the participating nodes, then the
gain for an arbitrary node ¢ is ;. Hence, the utility of a node is

Gi - f(Ci), if Sz' =1
Ui(S:) =4 Gy, if $; =0and 35; =1,j #4 (70)
0, S; =0,Vj.

The game has N equilibria in pure strategies, each one corre-
sponding to a single node forwarding the packet and the rest
N — 1 nodes dropping it. In mixed strategies, where a node i
forwards the packet with probability p;, the expected utility will
be

E{Ui} = pi(Gi — f(e) + Gi| 0 =p) [J ~p5) |. D
J#i

Assuming that the costs and gains are the same for all nodes,

then the game is symmetric and the equilibrium in mixed strate-

gies corresponds to a probability of forwarding p = 1 —

(C/G)Y/N=1 which is the same for all participating nodes. The

authors exploit this result to formulate a mechanism that reduces
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the overhead of routing protocols when they flood routing pack-
ets into the network.

V. CONCLUSIONS

In this work, we attempted to present the most basic proposals
for modeling routing in communication networks. In particular,
using the conventional networks as a start, we continued by pre-
senting the most popular models that are used in networks with
dynamic topology, such as ad-hoc networks, or with energy con-
strained nodes, such as sensor networks. A general conclusion is
that game theory provides the tools for analyzing selfishness and
complex interactions between network nodes. This path reveals
an aspect of network routing that could not have been analyzed
in any other way. We believe that combining these techniques
with other methods and analytical tools could result in a totally
new perspective of ad-hoc and sensor networks routing.

Despite the results accomplished so far, there is space for
more detailed investigation of the effects of selfishness in wire-
less ad hoc and sensor networks. Combined models of the net-
work and the higher or lower layers could reveal the interactions
between them and inspire mechanisms that could be used in or-
der to force cooperation, e.g., by designing more sophisticated
MAC protocols. Furthermore, topology changes seem to play a
critical role in selfish packet forwarding that has not been inves-
tigated in detail yet.
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