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ABSTRACT. In this paper, we consider of a convexifiable programming
problem with bounds on variables. We obtain Mond-Weir type duality
theorems for the convexifiable programming problems. Moreover, we give
a numerical example to illustrate our duality.
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1. Introduction and Preliminaries

Optimality conditions and duality in single objective or multiobjective pro-
grams have been of much interest in the recent past ([2, 5, 6, 7, 11]). Duality
theorems, sufficient optimality conditions for optimization problems are closely
related to convexity of their involving functions. In 1981, Hanson [1] introduced
an invex differentiable function, which is an important generalization of a con-
vex differentiable function, and established the Kuhn-Tucker sufficient optimal-
ity criteria, the weak duality and the strong duality for a nonlinear optimization
problem involving differentiable invex functions. Until now, the invexity concep-
tion was extended to the nondifferentiable cases by many authors ([4, 8, 9]).

Recently, Jeyakumar et al. ([3]) established that Kuhn-Tucker necessary op-
timality condition is sufficient for global optimality of the class of convexifiable
programming problems with bounds on variables for which a local minimizer is
global.

In this paper, we obtain Mond-Weir type duality results for the convexifiable
programming problems with bounds on variables. Moreover, we give a numerical
example which illustrates the result.
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In this paper, we consider the following programming problem with bounds
on variables:

(P) Minimize fy(z)
subject to  f;(z) <0, j=1,---,m,
u <z <oy t=1,-00,m,
where u; < v; and f; : R® = R, j=0,1,---,m are continuously differentiable

functions.

Let T : R — R be a function and let ¢ : R® — R™ be a separable strictly

monotone mapping, i.e., t(y) = (t1{y1), -+ , tn(yn))T and ¢; is strictly monotone
for y = (yl,---,yn)T and i = 1,---,n. Let Xo = {z e R" | 4; < z; <
v, i = 1,---,n}. We also assume that Xo C ¢t(R™) and ¢! is continuous.

The derivative of a function T of one variable at a is denoted by 7”"(a), and the
derivative of a function ¢ of several variables at a is denoted by Vt(a). Let

Yo = {ye]R" |y = t; (@), i=1,---,m, mEXo}
= {y e R™ | t7 M (wi) < yi <t7'(vy) if ti(ys) is strictly increasing}
= {y eR" | 7 () < yi < t7H(wi) if i(ys) is strictly decreasing}.

Then, clearly Y is also a box and since ¢ is one-to-one, Yy = t71(Xp) and
t(Yo) = Xo.

Following the notion of convexifiability, given in [3] and [10], we define the
following:

Definition 1.1. (Convexifiable functions) A function A : R — R is said to
be (strictly) convexifiable over Xy if the composite function T o hot is (strictly)
convex over the box Yy = t7}(Xp) for some ¢ : R® — R™, which is separable,
strictly monotone and continuously differentiable with Xo C t(R™) and ¢t~ is
continuously differentiable, and for some 7" : R — R which is strictly increasing
and continuously differentiable with T'(z) > 0, Vz € h(Xo).

Definition 1.2. (Convexifiable Programming) The problem (P) is called
a (strictly) convexifiable programming problem if for each j = 0,1,---,m, the
functions f; is convexifiable over Xy with the same t. That is, there exist Tj :
R—R, j=0,1,---,mand ¢t : R" — R" such that Tjo f; ot is (strictly) convex
over t~1(Xp) for each j = 0,1,---,m, where t is separable, strictly monotone
and continuously differentiable with Xo C ¢(R") and ¢! is differentiable and
T; is strictly increasing and differentiable with T}(z) > 0, Vz € f;(Xo), j =
0,1,---,m.
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If £ = (T, - ,2,)T € X is a local minimizer of (P) and if a certain con-
straint qualification holds then the following Kuhn-Tucker conditions at # hold
[1]:

(KT)  (@AeRP) Aifi(2) =0, j=1,---,m and
T

Vi@ +) NVE)| (z-1)20, VreXo.
j=1

2. Mond-Weir type duality

Now we formulate the Mond-Weir type for convexifiable programming prob-
lem as follows, and we establish duality theorems.

(D)  Maximize fo(u)

subject to
J=1

T
Vfo(u)+Z/\ijj(u)} (z—u)>0 Yz e X, (1)

Aifi(w) 20, 5=1,---,m, (2)
A>0. (3)

Theorem 2.1. (Weak Duality) Let z be a feasible solution of (P) and (Z, A)
be a feasible solution of (D). If (P) is a convezifiable programming problem, then

fo(z) > fo(z).

Proof. By convexifiablity of (P), we find ¢ : R* —» R® and ; : R - R, j =
0,1,---,m such that p; = ;0 fjo¢, =0,1,---,m are convex over ¢~1(X),
where ¢ is separable strictly monotone and continuously differentiable with ¢—*
is differentiable and such that Xy C ¢(R™) and ¢; is strictly increasing and
continuously differentiable with ¥}(z) > 0, Vz € f;(Xo), j = 0,1,---,m. Let
us denote ¢~ by t and ¢j-1 by T;, =0,1,--+,m. Then

f](ZE) =Tj(pj(t(x)))) TE X0> J=0,1,---,m.

Let = be a feasible solution of (P) and (Z, )) be a feasible solution of (D). By
(1), foreach i =1,---,n,

Té(po(t(i)))&Vpo(t(f)))ité(fi)(xl — %) >
=2 NTy(p5(H2)) (V5 (8(3)))th (3e) (21 — 72).
Je=1

A



1260 Moon Hee Kim

By following the method in [3], we can obtain the following:
foz) = fo(@)
= Ty (polt(2)) ~ To(polt(2))

= T3(¢) (po(t(2)) ~ Po(t(2))) (€ lies between po(t(z)) and po(t(2)))
> Ty (€)Vpo(t(Z))T (t(z) — t(Z)) (by the convexity of po)

= S (2 Van (2 ()~ 2)

> 0.
Therefore, fo(z) > fo(Z). O

Theorem 2.2. (Strong Duality) If  is an optimal solution of (P) at which a
constraint qualification is satisfied, then there exists \ € R such that (%, \) is
feasible for (D) and their objective values are equal. Furthermore, if the hypoth-
esis of Theorem 2.1 are satisfied for all feasible solutions of (P) and (D), then
Z and (Z,)) are optimal solutions of (P) and (D), respectively.

Proof. Since Z is an optimal solution of (P), by the Kuhn-Tucker necessary
conditions there exists A € R} such that
T

|:Vf0(f) + Z /\ijj(fi‘) (113 — CI_I) >0 Ve Xy,
j=1
)‘jfj(i‘) =0,j=1-,m
Thus (Z, \) is feasible for (D) and the objective values of (P) and (D) are equal.
By Theorem 2.1, fo(Z) > fo(u) for any feasible solution (u, A) of (D). Since (Z, A)
is a feasible solutlon of (D), (z, A) is an optimal solution of (D). Hence the result
holds. O

Example 2.1. Consider the following minimization problem:
(P) Minimize fo(z) = —2% — :B% 3
subject to  fi(z) = "t — ™2 — " <0,
z € Xo=[1,2] x [1,2] x [1,2].
Clearly, (P) is a convexifiable programming problem. Then the Mond-Weir type

dual problem of (P) is the following:

(D) Maximize —u? —uj —u}

subject to  (—2u1 + A" )(z1 — u1) — (2ug + Ae"?)(z2 — u2)
—(2uz + Ae*?)(z3 —ug) > 0 Vz € Xo,
Me*t —e*?) >0,
A>0.
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Let A = 0. Then Z = (2,2, 2) is a feasible solution for (P) and (z, A) = (2,2,2,0)
is a feasible solution for (D) and A(e®* — €®2) = 0. Since the weak duality
holds between (P) and (D), Z = (2,2,2) is an optimal solution of (P) and
(Z,A) = (2,2,2,0) is an optimal solution of (D) and their objective values are
equal. |

Remark 2.1. In Example 2.1, we can easily check that fy and f; are not n-invex
at T = (1,2,2) with respect to same n and f; is not quasiconvex at Z = (2,1, 1).

10.

11.
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