DOI QR코드

DOI QR Code

Development of a Short-term Rainfall Forecasting Model Using Weather Radar Data

기상레이더 자료를 이용한 단시간 강우예측모형 개발

  • 김광섭 (경북대학교 공과대학 건축토목공학부) ;
  • 김종필 (경북대학교 대학원 건축토목공학부)
  • Published : 2008.10.29

Abstract

The size and frequency of the natural disaster related to the severe storms are increased for recent decades in all over the globe. The damage from natural disasters such as typhoon, storm and local severe rainfall is very serious in Korea since they are concentrated on summer season. These phenomena will be more frequent in the future because of the impact of climate change related to increment of $CO_2$ concentration and the global warming. To reduce the damage from severe storms, a short-range precipitation forecasting model using a weather radar was developed. The study was conducted as following four tasks: conversion three-dimensional radar data to two-dimensional CAPPI(Constant Altitude Plan Position Indicator) efficiently, prediction of motion direction and velocity of a weather system, estimation of two-dimensional rainfall using operational calibration. Results demonstrated that two-dimensional estimation using weather radar is useful to analyze the spatial characteristics of local storms. If the precipitation forecasting system is linked to the flood prediction system, it should contribute the flood management and the mitigation of flood damages.

최근 몇 년간 전 세계에 걸쳐 폭풍우와 관련한 자연재해는 그 규모와 빈도에 있어서 상당히 증가하고 있는 추세다. 특히, 우리나라는 강수의 대부분이 여름철에 집중되어 있어 이러한 태풍, 폭우 그리고 국지성 집중호우 등과 같은 자연재해로 인한 피해가 더욱 심각하다. 이러한 현상은 대기 중 이산화탄소 농도의 증가로 인한 지구온난화와 엘리뇨 등으로 인하여 앞으로도 더욱 빈번해질 것으로 전망된다. 따라서 이와 같은 폭풍우로 인한 피해를 줄이기 위하여 본 연구에서는 기상레이더를 이용한 단시간 강우예측 모형을 개발하였다. 본 연구는 3차원으로 생산되는 레이더 자료를 2차원 CAPPI(Constant Altitude Plan Position Indicator)로 변환, 강우의 이동방향과 이동속도 예측, 현업보정을 이용한 2차원 강우량 산정으로 구성되어 있다. 연구결과 기상레이더를 이용한 국지성 호우의 단시간 강우예측 가능성을 제시하였으며 향후 홍수 예 경보시스템과 연계한다면 홍수 관리 및 피해 경감에 기여할 것으로 판단된다.

Keywords

References

  1. 박균명, 정효상 (2005). 기상레이더 입문. 토파민, pp. 55
  2. 정성화, 김경익, 하경자 (2005). “지상 우량계의 강우강도를 이용한 개선된 레이더 강우강도의 실시간 추정.” 한국기상학회지, 한국기상학회, 제41권, 제5호, pp. 751-762
  3. 최규현 (2005). 레이더 정량강우와 연계한 홍수유출 및 범람해석 시스템 확립. 박사학위논문, 경북대학교
  4. Atlas, D., Ulbrich, C., Marks, F.D. Jr., Amitai, E. and Williams, C.R., (1999). "Systematic variation of drop size and radar-rainfall relations." Journal of Geophysical Research, Vol. 104, pp. 6155-6169 https://doi.org/10.1029/1998JD200098
  5. Austin, A.M., (1987). "Relation between measured radar reflectivity and surface rainfall." Monthly Weather Review, Vol. 115, pp. 1053-1070 https://doi.org/10.1175/1520-0493(1987)115<1053:RBMRRA>2.0.CO;2
  6. Battan, L.J. (1973). Radar observation of the atmosphere, rev. ed. The University of Chicago Press, pp. 324
  7. Benjamin, S.G. and Seaman, N.L. (1985). "A simple scheme for objective analysis in curved flow." Monthly Weather Review, Vol. 113, pp. 1184-1198 https://doi.org/10.1175/1520-0493(1985)113<1184:ASSFOA>2.0.CO;2
  8. Cressman, G.P. (1959). "An operational objective analysis system." Monthly Weather Review, Vol. 87, pp. 367-374 https://doi.org/10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2
  9. Fujiwara, M. (1965). "Raindrop-size distribution from individual storms." Journal of Atmospheric Science. Vol. 22, pp. 585-591 https://doi.org/10.1175/1520-0469(1965)022<0585:RSDFIS>2.0.CO;2
  10. Hilst, G.R. and Russo, J.A. Jr. (1960). "An objective extrapolation technique for semi-conservative fields with an application to radar patterns." Technical Memo, No. 3, Travelers Weather Research Centre, Hartford, CT
  11. Kessler, E. Ⅲ. and Russo, J.A. Jr. (1963). "Statistical properties of weather echoes." Preprints 10th Weather Radar Conference, Washington, DC, AMS, pp. 25-33
  12. Kitzmiller, D.H. (1996). "One-hour forecasts of radar-estimated rainfall by an extrapolativestatistical method.' TDL Office Note 96-1, National Weather Service, NOAA, U.S. Department of Commerce, p. 26
  13. Kotarou, T., Takumi, N. and Takaaki, Y. (1995). "Operational calibration of raingauge radra by 10-minute telemeter rainfall." 3rd International Symposium on Weather Radars, Sao Paulo, Brazil, pp. 75-81
  14. Li, P.W. and Lai. S.T. (2004). "Short-range quantitative precipitation forecasting in Hong Kong." Journal of Hydrology, Vol. 288, pp. 189-209 https://doi.org/10.1016/j.jhydrol.2003.11.034
  15. Marshall, J.S. and Palmer, W.Mck. (1948). "The distribution of raindrops with size." Journal of Atmospheric Science, Vol. 5, No. 4, pp. 165-166 https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2
  16. Mohr, C.G. and Vaughan, R.L. (1979). "An economical procedure for Cartesian interpolation and display of reflectivity factor data in three-dimensional space." Bulletin of the American Meteorological Society, Vol. 18, pp. 661-670 https://doi.org/10.1175/1520-0450(1979)018<0661:AEPFCI>2.0.CO;2
  17. Ogden, F.L. and Julien, P.Y. (1994). "Runoff model sensitivity to radar rainfall resolution." Journal of Hydrology, Vol. 158, pp. 1-18 https://doi.org/10.1016/0022-1694(94)90043-4
  18. Rinehart, R.E. and Garvey, T. (1978). "Three dimensional storm motion detection by conventional weather radar." Nature, Vol. 273, pp. 287-289 https://doi.org/10.1038/273287a0
  19. Rosenfeld, D., Wolff, D.B. and Atlas, D. (1993). "General probability-matched relations between radar reflectivity and rainrate" Journal of Applied Meteorology, Vol. 32, pp. 50-72 https://doi.org/10.1175/1520-0450(1993)032<0050:GPMRBR>2.0.CO;2
  20. Suk, M.K., Chang, K.H., Nam, K.Y., Kim, K.L., You, C.H., Lee, J.H., Woo, D.M., Nam, H.W. and Kim, E.Y. (2008). "Real-time quantitative precipitation estimation using radar reflectivity over the Korean peninsula." ERAD 2008, The Fifth European Conference on Radar in Meteorology and Hydrology
  21. Tuttle, J.D. and Foote, G.B. (1990). "Determination of the boundary layer airflow from a single Doppler radar." Journal of Atmospheric and Oceanic Technology, Vol. 7, pp. 218-232 https://doi.org/10.1175/1520-0426(1990)007<0218:DOTBLA>2.0.CO;2
  22. Tuttle, J.D. and Gall, R. (1999). "A single-radar technique for estimating the winds in tropical cyclone." Bulletin of the American Meteorological Society, Vol. 65, pp. 653-668 https://doi.org/10.1175/1520-0477(1999)080<0653:ASRTFE>2.0.CO;2
  23. Vieux, B.E. (2004). Distributed hydrologic modeling using GIS. ISBN 0-7923-7002-3,m Kluwer Academic Publishers, Norwell, Massachusetts, Water Science and Technology Library, Vol. 48, pp. 293 https://doi.org/10.2166/wst.2004.0864

Cited by

  1. Comparison of Quantitative Precipitation Estimation Algorithms using Dual Polarization Radar Measurements in Korea vol.14, pp.6, 2014, https://doi.org/10.9798/KOSHAM.2014.14.6.105
  2. Applicability of Precipitable Water for Enhancing Radar Accuracy on Identification of Rain and No Rain vol.15, pp.1, 2015, https://doi.org/10.9798/KOSHAM.2015.15.1.111
  3. The Applicability Assesment of the Short-term Rainfall Forecasting Using Translation Model vol.43, pp.8, 2010, https://doi.org/10.3741/JKWRA.2010.43.8.695
  4. A Bias Correction Method for Rainfall Forecasts Using Backward Storm Tracking vol.10, pp.12, 2018, https://doi.org/10.3390/w10121728