DOI QR코드

DOI QR Code

Cracked-Healing and Bending Strength of Si3N4 Ceramics

Si3N4 세라믹스의 균열 치유와 굽힘 강도 특성

  • 남기우 (부경대학교 신소재공학부) ;
  • 박승원 (부경대학교 대학원) ;
  • 도재윤 (한국폴리텍 부산캠퍼스 컴퓨터응용기계과) ;
  • 안석환 (부경대학교 기계공학부)
  • Published : 2008.11.01

Abstract

Crack-healing behavior of $Si_3N_4$ composite ceramics has been studied as functions of heat-treatment temperature and amount of additive $SiO_2$ colloidal. Results showed that optimum amount of additive $SiO_2$ colloidal and coating of $SiO_2$ colloidal on crack could significantly increase the bending strength. The heat-treatment temperature has a profound influence on the extent of crack healing and the degree of strength recovery. The optimum heat-treatment temperature depends on the amount of additive $SiO_2$ colloidal. Crack healing strength was far the better cracked specimen with $SiO_2$ colloidal coating on crack surface. After heat treatment at the temperature 1,273 K in air, the crack morphology almost entirely disappeared by scanning prob microscope. At optimum healing temperature 1,273 K, the bending strength with additive $SiO_2$ colloidal 0.0 wt.% without $SiO_2$ colloidal coating recovered to the value of the smooth specimens at room temperature for the investigated crack sizes $100\;{\mu}m$. But that with $SiO_2$ colloidal coating increase up to 140 %. The amount of optimum additive $SiO_2$ colloidal was 1.3 wt.% and crack healed bending strength with $SiO_2$ colloidal coating increase up to 160 % to smooth specimen of additive $SiO_2$ colloidal 0.0 wt.%. Crack closure and rebonding of the crack due to oxidation of cracked surfaces were suggested as a dominant healing mechanism operating in $Si_3N_4$ composite ceramics.

Keywords

References

  1. Lange, F. F., 1970, “Healing of Surface Cracks in SiC by Oxidation,” J. Am. Ceram. Soc., Vol. 53, pp. 290 https://doi.org/10.1111/j.1151-2916.1970.tb12104.x
  2. Choi, S. R. and Tikare, V., 1992. “Crack Healing Behavior of Hot Pressed Silicon Nitride Due to Oxidation,” Scr. Metall. Mater., Vol. 26, pp. 1263∼1268 https://doi.org/10.1016/0956-716X(92)90574-X
  3. Thompson, A. M., Chan, H. M., Harmer, M. P. and Cook, R. E., 1995, “Crack Healing and Stress Relaxation in $Al_2O_3$ SiC Nanocomposites,” J. Am. Ceram. Soc., Vol. 78, pp. 567∼571 https://doi.org/10.1111/j.1151-2916.1995.tb08215.x
  4. Mitomo, M., Nishimura, T., and Tsutsumi, M., 1996, “Crack Healing in Silicon Nitride and Alumina Ceramics,” J. Mater. Sci. Lett., Vol. 15, pp. 1976∼1978 https://doi.org/10.1007/BF00274354
  5. Zhang, Y. Z., Edwards, L. and Plumbridge, W. J., 1998 “Crack Healing in a Silicon Nitride Ceramic,” J. Am. Ceram. Soc., Vol. 81, pp. 1861 ∼1868
  6. Houjou, K., Ando, K., Liu, S. P. and Sato, S., 2004, Crack-Healing and Oxidation Behavior of Silicon Nitride Ceramics. J. Eur. Ceram. Soc., Vol. 24, pp. 2329∼2338 https://doi.org/10.1016/S0955-2219(03)00645-9
  7. Ando, K., Shirai, Y., Nakatani, M., Kobayashi, Y. and Sato, S., 2002, "(Crack Healing + Proof Test): a New Methodology to Guarantee the Structural Integrity of a Ceramics Components" J. Eur. Ceram. Soc., Vol. 22, pp. 121∼128 https://doi.org/10.1016/S0955-2219(01)00236-9
  8. Lee, S. K., Ishida, W., Lee, S. Y., Nam, K. W. and Ando, K.. 2005, “Crack-Healing Behavior and Resultant Strength Properties of Silicon Carbide Ceramic”, J. Eur. Ceram. Soc., Vol. 25, pp. 569∼576 https://doi.org/10.1016/j.jeurceramsoc.2004.01.021
  9. Nam, K. W., Kim, H. S., Son, C. S., Kim, S. K. and Ahn, S. H., 2007, “Cracked-Healing and Elevated Temperature Bending Strength of Al2O3 Composite Ceramics by an Amount of Y2O3“ Transactions of the KSME(A), Vol. 31, pp. 1108 ∼1114 https://doi.org/10.3795/KSME-A.2007.31.11.1108
  10. Park, S. W., Ahn, S. H. and Nam, K. W., 2008 "Crack-Healing Behavior and Strength Properties of SiC Ceramics according to Additives $SiO_2$" Proceeding of Korea Ocean Science Technique Council 2007 Joint Meeting, pp. 2430
  11. Nam, K. W., Kim, M. K., Park, S. W., Ahn, S. H. and Kim, J. S.. 2007, “Crack Healing Behavior and Bending Strength of $Si_3N_4$/SiC Composite Ceramics by $SiO_2$ Colloidal”, Materials Science and Engineering: A, Vol. 471, pp. 102∼105 https://doi.org/10.1016/j.msea.2007.03.005
  12. Kim, M. K., Kang, S. B., Ahn, S. H. and Nam, K. W.. 2007, "Strength and Surface Morphology of $Si_3N_4$ Composite Ceramics Coated with $SiO_2$ Gel", Solid State Phenomena Vols. 124-126, pp. 719∼722 https://doi.org/10.4028/www.scientific.net/SSP.124-126.719
  13. Kim, H. S., Kim, M. K., Kang, S. B., Ahn, S. H. and Nam, K. W.. 2008, “Bending Strength and Crack-Healing Behavior of Al2O3/SiC Composites Ceramics”, Materials Science and Engineering A, Vol. 483–484, pp. 672∼675 https://doi.org/10.1016/j.msea.2006.09.169
  14. Kim, H. S., Kim, M. K., Kim, J. W., Ahn, S. H. and Nam, K. W., 2007, “Strength of Crack Healed-Specimen and Elastic Wave Characteristics of Al2O3/SiC Composite Ceramics”, Transactions of the KSME(A), Vol. 31, No. 4, pp. 425∼431 https://doi.org/10.3795/KSME-A.2007.31.4.425
  15. Nam, K. W., Kim, M. K., Kim, H. S., Kim, J. W. and Ahn, S. H., 2006, "Bending Strength of $Si_3N_4$ Monolithic and Si_3N_4$/SiC Composite Ceramics and Elastic Wave Characteristics by Wavelet Analysis“, International Journal of Modern Physics B, Vol. 20, No. 25-27, pp. 4279 ∼4284 https://doi.org/10.1142/S0217979206041227
  16. Ando, K., Houjyou, K., Chu, M. C., Takeshita, S., Takahashi, K., Sakamoto, S. and Sato, S., 2002 "Crack-Healing Behavior of Si_3N_4$/SiC Ceramics under Stress and Fatigue Strength at the Temperature of Healing (1000$^{\circ}C)", J. Eur. Ceram. Soc., Vol. 22, pp. 1339∼1346 https://doi.org/10.1016/S0955-2219(01)00435-6
  17. Ando, K., Takahashi, K., Nakayama, S. and Saito, S., 2002 "Crack-Healing Behavior of Si3N4/SiC Ceramics under Cyclic Stress and Resultant Fatigue Strength at the Healing Temperature", J. Am. Ceram. Soc., Vol. 85, pp. 2268∼2272 https://doi.org/10.1111/j.1151-2916.2002.tb00446.x
  18. Ando. K., Chu, M. C., Kobayashi, Y., Yao, F. and Sato, S., 1999, "Crack Healing Behaviour and High Temperature Strength of Silicon Nitride Ceramics", JSME, Vol. 65, pp. 1132∼1138 (in Japanese)

Cited by

  1. Nano-Colloid vol.38, pp.10, 2014, https://doi.org/10.3795/KSME-A.2014.38.10.1117
  2. Determining Mechanical Properties of ZrO2 Composite Ceramics by Weibull Statistical Analysis vol.39, pp.10, 2015, https://doi.org/10.3795/KSME-A.2015.39.10.955
  3. Weibull Statistical Analysis on Mechanical Properties in ZrO2 with SiC Additive vol.39, pp.9, 2015, https://doi.org/10.3795/KSME-A.2015.39.9.901
  4. Composites Ceramics by Different Shot Size vol.40, pp.12, 2016, https://doi.org/10.3795/KSME-A.2016.40.12.987
  5. Bending Strength Properties of SiC Ceramics at Different Roughness Values of Polishing Plates vol.35, pp.7, 2011, https://doi.org/10.3795/KSME-A.2011.35.7.779