DOI QR코드

DOI QR Code

Magnetophoretic Microseparators for Separating Blood Cells Based on Their Native Magnetic Properties

혈액 세포의 고유자성을 이용한 마이크로 자기영동 세포분리기

  • Published : 2008.11.01

Abstract

This paper presents the characterization of a continuous magnetophoretic microseparator for separating white and red blood cells from peripheral whole blood cells based on their native magnetic properties. The magnetophoretic microseparator separated the blood cells using a high gradient magnetic separation (HGMS) method without the use of additives such as magnetic beads or probing materials. Experimental results show that the paramagnetic capture mode microseparator can continuously separate out 93.5% of red blood cells and 97.4% of white blood cells from diluted whole blood, and the diamagnetic capture mode microseparator can continuously separate out 89.7% of red blood cells and 72.7 % of white blood cells by using applying an external magnetic flux of 0.2 T using a permanent magnet.

Keywords

References

  1. Watson, J. H. P., 1973, "Magnetic Filtration," J. Appl. Phys., Vol. 44, pp. 4209~4213 https://doi.org/10.1063/1.1662920
  2. Birss, R. R., Gerber, R., and Parker, M. R. 1976, "Theory and Design of Axially Ordered Filters for High Intensity Magnetic Separation," IEEE Trans. Magn., Vol. MAG-12, pp. 892~894 https://doi.org/10.1109/TMAG.1976.1059129
  3. Uchiyama, S. Kondo, S. and Takayasu, M. 1976, "Performance of Parallel Stream Type Magnetic Filter for HGMS," IEEE Trans. Magn. Vol. MAG-12, pp. 895~897 https://doi.org/10.1109/TMAG.1976.1059210
  4. Uchiyama, S., Kurinobu, S., Kumazawa, M., and Takayasu, M., 1977, "Magnetic Particle Buildup Process in Parallel Stream Type HGMS Filter," IEEE Trans. Magn., Vol. MAG-13, pp. 1490~1492 https://doi.org/10.1109/TMAG.1977.1059607
  5. Taylor, D. S., and Coryell, C. D., 1938, "The Magnetic Susceptibility of the Iron in Ferrohemoglobin," J. Amer. Chem., Vol. 60, pp. 1177~1181 https://doi.org/10.1021/ja01272a051
  6. Melville, D., Paul, F. and Roath, S., 1975, "Direct Magnetic Separation of Red Cells from Whole Blood," Nature, Vol. 255, pp. 706 https://doi.org/10.1038/255706a0
  7. Melville, D., Paul, F. and Roath S., 1975, "High Gradient Magnetic Separation of Red Cells from Whole Blood," IEEE Trans. Magn., Vol. MAG-11, pp. 1701~1704 https://doi.org/10.1109/TMAG.1975.1058970
  8. Melville, D., Paul, F. and Roath, S., 1982, "Fractionation of Blood Components Using High Gradient Magnetic Separation," IEEE. Trans. Magn., Vol. MAG-18, pp. 1680~1685 https://doi.org/10.1109/TMAG.1982.1062171
  9. Graham, M. D., 1981, "Efficiency Comparison of Two Preparative Mechanisms for Magnetic Separation of Erythrocytes from Whole Blood," J. Appl. Phys., Vol. 52, pp. 2578~2580 https://doi.org/10.1063/1.329003
  10. Bahaj, A. S., Watson, J. H. P. and Ellwood, D. C., 1989, "Determination of Magnetic Susceptibility of Loaded Micro-Organisms in Biomagnetic Separation," IEEE Trans. Magn., Vol. 25, pp. 3809~3811 https://doi.org/10.1109/20.42440
  11. Takayasu, M., Duske, N., Ash, S. R. and Friedlaender, F. J., 1982, "HGMS Studies of Blood Cell Behavior in Plasma," IEEE Trans. Magn., Vol. MAG-18, pp. 1520~1522 https://doi.org/10.1109/TMAG.1982.1062072
  12. Takayasu, M., Kelland, D. R. and Minervini, J. V., 2000, "Continuous Magnetic Separation of Blood Components from Whole Blood," IEEE Trans. Appl. Superconduct., Vol. 10, pp. 927~930 https://doi.org/10.1109/77.828383
  13. Han, K.-H. and Frazier, A. B., 2004, "Continuous Magnetophoretic Separation of Blood Cells in Microdevice Format," J. Appl. Phys., Vol. 96. pp. 5797~5802 https://doi.org/10.1063/1.1803628