The Geometer's Sketchpad를 활용한 8학년 학생들의 사각형 학습

한혜숙 ${ }^{1)}$

Abstract

본 연구의 목적은 8 학년 학생들의 사각형 학습 및 기하학적 추론 능력의 발달을 위 해서 GSP의 사용이 자와 각도기 같은 전통적인 도구의 사용보다 더 효과적인지를 탐 구하고, 어떻게 그 소프트웨어의 사용이 학생들의 사각형 학습과 추론 늠력의 발달에 영향을 끼치는지를 조사하는 겻이다. 사후 학업 성취도 검사 결과에 의하면 GSP를 사용한 집단과 자와 각도기를 사용한 집단의 평균 성적에서 통계적으로 유의미한 차 이가 발견되었다. GSP를 사용한 집단이 자와 각도기를 사용한 집단보다 유의미하게 높은 평균 성적을 보여주었다. 학생 면접 결과에 의하면, GSP의 사용이 학생들의 기 하학적 추론 능력을 발달시키는데 더 효과적이었다. GSP를 사용한 집단의 학생들이 자와 각도기를 사용한 집단의 학생들보다 van Hiele 2 와 3 수준에서 더 높은 정도의 달성도를 보여주었다. GSP가 제공하는 수학적 개념에 대한 역동적인 시각적 효과와 조작 경혐이 학생들이 사각형 학습을 개념적으로 접근하도록 하는데 중요한 역할을 하였고, 그런 겸험들이 학생들이 기존에 갖고 있던 수학적 개넘에 대한 오류를 확인하 고 개념을 재정립하는데 도움을 주었다.

주요용어 : 사각형 학습, The Geometer's Sketchpad(GSP), 자와 각도기, 기하학적 추론 능력, van Hiele 수준, 달성도

I. 서 론

1. 연구의 필요성과 목적

테크놀로지는 우리의 일상생활을 보다 편리하고 윤택하게 만드는데 지대한 영향을 끼치고 있다. 수학교육 분야에서도 테크놀로지 사용에 대한 긍정적인 결과들이 보고됨에 따라 학교 수학에 적절한 테크놀로지의 사용이 적극 권장되고 있다. $\mathrm{NCTM}(2000)$ 은 테크놀로지는 수 학을 가르치고 배우는데 필수적인 요소이며 테크놀로지의 사용은 학생들의 수학학습을 향상 시키고 효과적인 교수•학습 과정을 뒷받침할 수 있다고 주장하였다. 예를 들면, 컴퓨더나 계산기와 같은 테크놀로지가 제공하는 그래픽 기능은 많은 학생들이 스스로 상상하거나 만 들기 어려웠던 강력한 시각적 모델을 제공하여 수학적 개념에 대한 학생들의 탐구 과정을

[^0]도울 수 있다. 또한 컴퓨터나 계산기의 신속하고 정확한 계산 처리 기능은 학생들이 접근 할 수 있는 수와 관련된 문제의 영역을 확장시킬 수 있을 뿐 아니라 학생들이 계산 과정보 다는 개념화와 수학적 모델링 과정에 더 초점을 둘 수 있게 한다. 테크놀로지가 제공하는 즉각적인 피드백 또한 학생들의 학습을 촉진시킬 수 있다. 게다가 테크놀로지의 사용은 교 사가 학생들의 탐구 과정이나 사고 과정을 보다 면밀히 관찰할 수 있는 기회를 제공하여 교 사가 교수학적 결정을 내리는데 유용한 정보를 수집할 수 있도록 도와준다.

학교수학에서 유용하게 사용될 수 있는 테크놀로지로는 계산기와 컴퓨터 소프트웨어 등이 있는데 본 연구에서는 평면 도형의 학습에 유용하게 사용될 수 있는 역동적인 기하 소프트 웨어의 하나인 The Geometer's Sketchpad(Jackiw, 2001)의 활용에 대해서 알아보고자 한 다. The Geometer's Sketchpad(이하 GSP)는 학생들의 기하학습을 돕기 위해서 $\operatorname{NCTM}(2000)$ 이 사용을 권장하고 있는 탐구형 소프트웨어이다.

본 연구의 목적은 GSP 의 사용이 8학년 학생들의 사각형의 성질과 정의 및 포함관계에 대 한 개념적 이해와 기하학적 추론 능력을 배양하는데 어떤 영향을 끼치는지를 탐구하는 것이 다. 학습 주제(사각형의 성질과 정의 및 포함관계)가 선택된 이유는 여러 연구(Mason, 1995; Monaghan, 2000; Blume, Galindo, \& Walcott, 2007)에서 많은 중학교 학생들이 사각형과 관련된 학습에서 다양한 오개념(misconception)을 갖고 있으며 그들의 기하학적 추론 능력 또한 낮은 수준이라고 보고되었고, 역동적인 기하 소프트웨어의 사용이 가능한 학습 주제이 기 때문이다. 2003년도에 실시된 미국의 국가 수준의 평가인 National Assessment of Educational Progress(NAEP)의 결과에 의하면 평행사변형의 성질을 묻는 기초적인 문항에 미국 8 학년 학생들의 47% 만이 정답을 제시하였다. 게다가 주어진 도형의 성질(사다리꼴의 성질)을 이용해서 그 도형이 어떤 도형인지(사다리꼴)를 추론하는 질문에서는 단지 25% 의 학생만이 정답을 제시 할 수 있었다(Blume, Galindo, \& Walcott, 2007). Mason(1995)의 연 구는 심지어 8학년 영재 학생들도 사각형에 대한 다양한 개념적 오류를 갖고 있음을 보여주 었다. Mason의 인터뷰에 참가한 20 명의 8 학년 영재 학생들 중 40% 만이 정사각형을 직사각 형으로 인식하였고, 그들 중 45% 의 학생들은 표준형 평행사변형(정사각형, 마름모, 직사각 형이 아닌 평행사변형)을 직사각형으로 인식하기도 하였다.

모든 중학교 수준 학생들은 도형의 성질을 사용해서 도형을 파악하고 분류하며 도형 사이 의 포함 관계를 이해할 수 있어야 한다(NCTM, 2000). 그러나 위에서 제시한 연구 결과에 의하면 많은 8학년 학생들이 사각형과 관련된 도형의 개념 형성에 오류나 문제를 갖고 있음 을 알 수 있다. 따라서 본 연구는 테크놀로지를 활용한 학습 환경이 학생들의 개념적 이해 및 기하학적 추론 능력을 발달시키기 위해서 전통적인 학습 환경보다 효과적인지를 알아보 는데 초점을 두었다.

2. 연구문제

본 연구의 목적에 따라서 다음과 같은 세 가지의 연구문제가 주어졌다.

1) GSP 를 사용한 학생들과 전통적인 학습 도구(자와 각도기 등)를 사용한 학생들 간의 학업 성취도에 유의미한 차이가 있는가?
2) GSP 를 사용한 학생들과 전통적인 학습 도구(자와 각도기 등)를 사용한 학생들 간의 기하학적 추론 능력의 발달에 차이가 있는가?
3) 어떻게 GSP의 사용이 학생들의 사각형 학습에 대한 개념적 이해 및 기하학적 추론능 력의 발달에 영향을 미치는가?

II. 이론적 배경 및 선행연구

다음은 본 연구의 이론적 틀을 제공해주는 몇 가지 학습 이론과 GSP의 활용과 관련된 선 행연구 결과를 살펴보고자 한다.

1. 기하학적 사고에 대한 van Hieles 모델

1957년 Pierre van Hiele과 Dina van Hiele-Geldof는 왜 학생들이 기하 학습에 어려움을 겪는지 그리고 어떻게 학생들이 기하학적 사고를 발달시키는지를 설명하기 위해서 기하학적 사고의 발달 모델을 제시하였다(Fuys, Geddes, \& Tischler, 1988). 그 후 많은 연구자들은 van Hieles가 제시한 모델이 학생들의 기하학적 사고 발달을 설명하는데 있어서 유용하다고 주장하였다(Wirszup, 1976; Hoffer, 1983 Mayberry, 1983; Burger \& Shaughnessy 1986; Fuys, et al., 1988; Senk, 1989). van Hieles 모델의 핵심 아이디어는 모든 학생의 기하학적 사고는 5 개의 일련의 사고 수준을 통해서 발달되고 만약에 한 수준이 완벽하게 성춰되지 않 는 상황에서 다음 수준으로 학습이 진행되어 진다면 그 학생은 그 수준에서 개념적이 아닌 단지 알고리듬적으로(algorithmically)만 학습을 할지도 모른다는 것이다(Mayberry, 1983, p. 58). 이는 학생들의 개념적 이해를 향상시키기 위해서 교사는 학생들의 사고 수준을 바르게 인식하고 그에 맞는 교수•학습법을 사용해야 함을 시사한다.
van Hieles는 초기 논문에서 각각의 5개의 사고 수준을 0-4 시스템을 사용해서 나타냈지 만 후에 연구자들에 의해 기초 수준인 제 0 수준에도 미치지 못하는 아동들이 있음이 발견 됨에 따라서 최근에는 기초 수준인 제 0 수준을 제 1 수준으로 표기하여 전체를 1-5로 나타 내는 표기법이 사용되고 있다. Pierre van Hiele 또한 그의 1986년 저서에서 기초 수준을 제 1 수준으로 표기하고 있다. 본 논문에서는 학생들의 사고 발달 수준을 나타내기 위해서 $1-5$ 시스템을 사용한다. van Hieles가 제시한 5개 수준의 특징을 간략하게 기술하면 다음과 같 다.

- 제 1 수준 : 시각화 수준(Recognition or Visualization)

학생들은 도형을 단지 물리적인 외양에 의존하여 인식한다. 도형의 성질은 인식되지 않는다.

- 제 2 수준: 분석 수준 (Analysis)

학생들은 도형을 그 도형의 구성 요소들의 성질에 따라서 분석한다. 그러나 학생들은 도형의 성질들 사이의 관계와 도형들 사이의 관계에 대해서 설명 할 수 없다. 도형에 대한 정의 또한 이해하지 못 한다.

- 제 3 수준: 비형식적 연역 수준 (Ordering or Informal deduction) 학생들은 도형의 성질들 사이의 관계와 도형들 사이의 관계를 확립할 수 있 고 추상적인 정의를 구성할 수 있다. 그러나 연역적 논증에 대한 중요성이나 역할은 아직 이해되지 않는다.
- 제 4 수준: 형식적 연역 수준 (Formal deduction)

학생들은 형식적 증명을 할 수 있고 증명의 각 단계에 대해서 논리적 이유 또한 제공할 수 있다. 그들은 공리, 정의, 정리의 차이점과 역할을 이해할 수 있다.

- 제 5 수준: 엄밀화 수준 (Rigor)

학생들은 다양한 공리체계 안에서 수학적 구조를 이해하고 서로 다른 수학 적 체계를 비교하고 분석할 수 있다.
van Hieles는 학생들의 사고 수준이 한 수준에서 다음 상위 수준으로 이행하는데 있어서 교수•학습 프로그램의 중요성을 강조하였고, 질의/안내 단계, 안내된 탐구 단계, 발전/명료화 단계, 자유 탐구 단계, 통합 답계의 5단계로 이루어진 교수•학습 과정을 제시하였다. 그러나 van Hieles가 제시한 교수•학습 과정을 통해서 학생들의 사고 수준의 비약이 가능하도록 하 기 위해서는 교사의 일방적인 설명이 아닌 각 단계에서 학생들 스스로의 탐구 활동이 중요 한 요인으로 여겨진다(황혜정 외, 2005). 이는 교사가 학생들 스스로 탐구하고 지식을 구성 할 수 있는 학습 환경을 제공해주어야 함을 시사하고, 많은 인지주의(예, Piaget, Bruner, Dienes), 구성주의 학습 심리학자(예, von Glasersfeld, Vygotsky)들의 견해와도 일치한다.
2. Dienes의 학습 이론

Dienes(1960)는 네 가지의 수학학습 원리를 제시하였고, 각각에 대해서 간략하게 살펴보 면 다음과 같다.

- 역동적 원리(Dynamic Principle): 역동적 원리란 수학적 개념을 형성하기 위해서, 예비 놀이, 구조화된 놀이, 실습 놀이가 적절한 시기에 필수적인 경험으로서 제공되어 야 한다는 것이다.
- 구성의 원리(Constructivity Principle): 구성의 원리란 구성 활동이 분석 활동에 선행되 어야 한다는 것이다.
- 수학적 다양성의 원리(Mathematical Variability Principle): 수학적 다양성의 원리란 변 인을 포함하고 있는 개념은 가능한 한 많은 수의 변인를 포함하는 경험에 의해서 학습되어야 한다는 것이다.
- 지각적 다양성의 원리(Perceptual Variability Principle): 지각적 다양성의 원리는 동일한 수학적 개념 구조가 가능한 한 많은 인지적 동치 형태로 제시되어야 한다는 것이 다.

수학적 다양성의 원리에 대해서 좀 더 자세히 살펴보면, 수학적 다양성의 원리는 수학적 개념의 일반화와 관련이 있다. 예를 들면, "평행사변형"이란 수학적 용어에 대한 이해를 향 상시키기 위해서, 학습자에게 도형의 변의 길이, 각의 크기, 위치 등 가변적인 요인들을 가 능한 많이 변화시킨 다양한 형태의 평형사변형이 제시되어야 한다. 즉, 마주보는 두 쌍의 변 이 평행인 사각형이라는 평행사변형의 불변의 요인을 제외한 변의 길이, 각의 크기, 위치 등 가변적인 요인들을 가능한 많이 변화시킨 다양한 모습의 평행사변형을 제시해야 한다. 때때 로 많은 학생들이 직사각형과 정사각형은 평행사변형이 아니라고 민기도 한다. 이런 오개념

의 형성은 교수•학습과정에서 수학적 다양성의 원리의 부재를 보여준다(Post, 1992). 권성 롱외 (2006)는 수학적 다양성의 원리에 의한 학습 환경을 만들기 위해서 탐구형 소프트웨어 와 같은 공학 도구의 사용을 제안하였다.

3. 구성주의 관점

구성주의 관점에서 지식은 학습자에게 수동적으로 전달되는 것이 아니라 학습자 스스로의 능동적인 구성 활동을 통해서 구성되어진다(Jones \& Southern, 2003). 구성주의는 그 강조 점에 따라 몇 개의 분파(조작적 구성주의, 급진적 구성주의, 사회적 구성주의 등)로 나누어 지지만 학습자의 능동적인 지식 구성 활동이나 사회적 상호 작용을 중요시 한다는 점에서 공통점이 있다(황혜정 외, 2005). 구성주의 관점에서 학습 또는 지식 형성 과정이 활발하게 이루어지기 위해서는 교사와 학생은 전통적인 교수•학습 과정에서와는 전혀 다른 역할을 한다. 교사는 학습 안내자, 조력자, 학습 촉진자 등의 역할을 수행하고 학생은 능동적인 지 식 생산자의 역할을 해야 한다. Phye(1997)는 구성주의 관점에 입각한 교사는 다음과 같은 위치에 있어야 한다고 제안하였다.

> (1) 교사는 학생들을 위해서 학습 동기를 유발하는 상황을 만들어야 하고, (2)문제 상황을 만드는데 책임감 갖아야 하며, (3)학생들의 사전 지식 습득 및 사전 지식의 retrieval을 촉 진시키고, (4)학습에 대한 태도를 강조하고 단순히 학습 결과가 아닌 학습의 과정이 중요 시 되는 환경을 조성해야 한다(p. 596).

실험처치에 필요한 모든 학습 활동은 앞에서 살펴본 van Hieles의 기하학습 모델, Dienes 의 수학적 다양성의 원리, 구성주의 관점을 토대로 계획되었고 시행되었다.

4. The Geometer's Sketchpad의 활용에 대한 선행 연구

GSP의 활용은 다양한 측면에서 수학 교수•학습 과정에 긍정적인 영향을 줄 수 있다.
첫째, Marrades \& Gutie'rrez(2000)에 의하면, GSP는 전통적인 교사 중심의 정적인 학습 환경을 학습자 중심의 동적인 학습 환경으로 전환하기 위한 수단으로 사용할 수 있다. GSP 의 활용은 학습자로 하여금 도형을 직접 작도하고, 탐구하고, 추론하는 활동을 용이하게 하 여 탐구적인 학습 분위기를 만들 수 있고 학습자의 지식 구성의 과정을 촉진시킬 수 있다.

둘째, GSP 의 활용은 학습자의 추상적인 사고력을 발달시키는데 긍정적으로 작용할 수 있 다. Liu \& Cummings(2001)는 GSP가 제공하는 풍부한 시각적, 구체적 경험이 학습자가 수 학적 개념에 대해서 보다 복잡하고 추상적인 수준에서 생각할 수 있도록 하는 사고에 있어 서 "질적인 변화(qualitative change)"를 촉진할 수 있다고 주장했다. Bennett(2002)도 GSP 가 제공하는 다양한 탐구 활동이 학생들의 기하학적 사고 수준(van Hiele 수준)의 발달에 중요한 역할을 한다고 주장하였다.

셋째, GSP 의 활용은 학습의 정의적 측면에도 긍정적인 영향을 줄 수 있다. GSP의 사용은 학습자에게 학습 동기를 유발하고(전영국, 1999), 수학학습에 대한 학습자의 태도를 긍정적 인 방향으로 변화시켜 학습자의 학습 참여도를 향상시킬 수 있었다(Jiang, 2002).

컴퓨터 소프트웨어는 여러 측면에서 교수•학습 과정에 효과적으로 사용될 수 있지만 소

프트웨어의 학습 효과는 활용 방법에 따라서 다르게 나타날 수 있다. 예를 들면, Connell(1998)은 컴퓨터를 학생들에게 도구용과 제시용으로 사용했을 때 그 효과가 다르게 나타난다고 보고하였다. 그러므로 GSP도 그 활용 방법에 따라서 학습 효과가 다르게 나타 날 수 있으므로 교사의 신중한 교수학적 결정이 필수적이다.

다음은 기하학습에 GSP의 활용 방안 및 그 효과에 대한 연구 결과에 대해서 살펴보도록 한다. 먼저, 학습자가 GSP 를 활용하는 방법에 대한 연구 결과를 보면, GSP는 크게 두 가지 측면에서 활용되었다. 학습자는 GSP를 탐구 도구(investigation tool) 또는 입증/증명 도구 (verification tool)로 활용하였다(Choi-Koh, 1999; Jiang, 2002; Santos-Trigo, 2004). 학습자 는 주어진 과제에 대한 구체적인 탐구 활동에 필요한 시각적 모델을 만들기 위한 수단으로 GSP를 활용하였다. 또는 주어진 과제 해결에 필요한 수학적 개념 사이의 관계를 탐구하기 위해서 GSP가 사용되었다. 탐구 수준에서 넘어서 GSP는 학습자가 자신의 추론 및 증명을 입증하기 위한 수단으로도 사용되었다. 학습자는 자신이 발견한 증명 과정이 참임을 테스트 하기 위해서 또는 주어진 명제에 대한 반례를 제시하기 위한 수단으로 GSP를 활용하였다. Jiang(2002)은 학생들의 기하학적 사고 수준이 낮을수록 GSP는 주로 탐구 도구 (investigation tool)로 사용되어지고, 학생들의 사고 수준이 향상될수록 GSP는 입증/증명 도 구(verification tool)로 사용되어진다고 주장하였다.

GSP의 활용이 학생들의 사고 수준을 향상시키는데 긍정적인 역할을 한다는 연구 결과들 이 보고되었다(예, Choi-Koh, 1999; Liu \& Cummings, 2001; McClintock, Jiang, \& July 2002; Jiang, 2002; Santos-Trigo, 2004). Choi-Koh(1999)의 사례 연구(case study)에 의하 면, GSP가 제공하는 작도 및 역동적인 시각화 기능이 학생의 사고 수준을 직관적 수준에서 보다 추상적인 연역 수준으로 발달시키는데 긍정적으로 작용하였다. McClintock, Jiang, \& July (2002)와 Jiang(2002)의 연구 결과에서도 기하학습에 GSP가 활용되었을 때 학생들의 기 하학적 사고 수준(van Hiele 수준)이 적어도 한 수준 향상되었음을 알 수 있었다. Santos-Trigo(2004)는 역동적인 소프트웨어의 사용은 학생들의 사고 수준을 단순히 특정 답 을 찾거나 특정 문제에 대답하는 정도를 넘어선 보다 추상적인 수준으로 이끌 수 있는 기회 를 제공한다고 주장하였다.

III. 연구 방법 및 절차

본 연구는 양적 연구 방법(quantitative method)과 질적 연구 방법(qualitative method)을 혼합해서 사용하였다. 두 집단 간의 성취도 차이를 조사하기 위해서 통계적 자료 분석법이 사용되었고, 보다 심도 깊게 두 집단에 있는 학생들 간의 개념 이해 및 기하학적 사고에 있 어서 어떤 차이가 있는지 조사하고, GSP의 사용이 어떻게 학생들의 학습 활동에 기여하는 지 조사하기 위해서 반 구조화된 면접과 설문지가 사용되었다.

1. 연구 대상

연구 대상은 미국 미네소타주 미네아폴리스 지역에 소재하고 있는 한 공립 중학교의 Wernimont교사의 수학 수업에 등록한 8학년 5개 학급의 97 명의 학생이다. 학교 컴퓨터실의 사용 여부에 따라서 5 개 학급 중 3 개 학급이(57명) GSP 집단으로 나머지 2개 학급은(40명)
$\mathrm{PP}($ paper and pencil: 종이와 연필) 집단으로 정해졌다.
2. 연구 설계

본 연구의 연구 문제를 해결하기 위해서 실험 설계는 준 실험 설계 (Quasi-Experimental Design)의 이질 통제 집단 설계(Nonequivalent control group design)(Campbell \& Stanley, 1963)가 적용되었고 구체적인 설계모형은 <표 $1>$ 과 같다.
<표 1> 실험설계

집단	사전 검사		실험처치	사후 검사		
실혐반(GSP 깁단)	O_{1}	$\mathrm{~A}_{1}$	X_{1}	O_{2}	$\mathrm{~A}_{2}$	$\mathrm{~B}_{1}$
비교반(PP 깁단)	O_{1}	$\mathrm{~A}_{1}$	X_{2}	O_{2}	$\mathrm{~A}_{2}$	$\mathrm{~B}_{2}$

O_{1} : 사전 학업 성춰도 지필 검사, $\quad \mathrm{O}_{2}$: 사후 학업 성춰도 지필 검사
A_{1} : 사전 면접 검사 (6 명 학생 대상), A_{2} : 사후 면접 검사 (6 명 학생 대상)
X_{1} : GSP를 활용한 교수•학습,
X_{2} : 전통적인 도구(자, 각도기 등)를 활용한 교수 - 학습
B_{1} : GSP 활용에 대한 설문지 검사
B_{2} : 전통적인 도구(자, 각도기 등) 활용에 대한 설문지 검사
3. 검사도구

본 연구에서는 지필 검사, 면접 검사, 설문지 검사가 실시되었다.

1) 지필 검사: 사전 학업 성취도 검사, 사후 학업 성춰도 검사

사전 학업 성춰도 검사의 목적은 사각형 학습과 관련된 두 집단의 사전 지식의 동질성 여 부를 알아보는 것이다. 사전 학업 성춰도 검사는 각각의 종류의 사각형의 성질, 정의, 포함 관계와 관련된 15 개의 문항으로 구성되었다. 15 개의 문항 중 3 개 문항은 미국의 국가 수준 의 평가인 National Assessment of Educational Progress(이하 NAEP, 1996, 2003)에서 사 용되어진 사각형 관련 문항들이고, 직사각형의 최소 필수 성질을 묻는 1 개 문항은 Fuys, Geddes, \& Tischler(1988)에 의해서 개발된 van Hiele 수준을 조사하기 위한 인터뷰 문항 중 하나를 재구성한 문항이다. 나머지 문항들은 개정 교육과정(reform curriculum) 및 학습 자료를 토대로 연구자에 의해서 개발되었고, 두 명의 전문가들에 의해서 검토되었다.

사후 학업 성춰도 검사의 목적은 두 집단 학생들의 사각형 학습에 대한 성춰도를 비교하 고 각각의 학습 도구의 효과를 조사하는 것이다. 사후 검사는 개인별 평가와 소집단 평가 두 부분으로 시행되었다. 개인별 평가는 15 개의 문항으로 구성되었고, 그 중 7 개의 문항은 Third International Mathematics and Science Study(TIMSS, 1995), Van Hiele Geometry Test(Usiskin, 1982), $\operatorname{NAEP}(1992,2003,2005)$ 문항들 중에서 선택되었다. 나머지 8 개의 문 항은 학생들의 교실 학습 활동과 개정 교육과정(reform curriculum)의 학습 자료를 토대로 연구자에 의해서 개발되었다. 사후 학업 성취도 검사지 또한 2 명의 전문가에 의해서 검토되 었다. 개인별 사후 학업 성춰도 검사지의 평가 문항들은 <부록 1 >과 같다. 소집단 평가는 4

개의 열린 문제로 구성되었고 각 문항은 학생들이 교실에서 경험했던 학습 활동과 비슷한 수준의 문항들이었다.
2) 반 구조화된 학생 면접

사전 면접의 목적은 학생들의 기존의 van Hiele 수준을 조사하는 것이고, 면접 내용은 Fuys, Geddes, \& Tischler(1988)에 의해서 개발된 면접 문항과 활동을 토대로 재구성되었 다. 사후 면접의 목적은 학습 후 학생들의 van Hiele 수준을 조사하여 두 집단에서 학생들 의 van Hiele 수준이 어떻게 다르게 향상되었는지를 알아보고자 하는 것이다. 면접 문항은 Van Hiele Geometry Test(Usiskin, 1982)의 문항과 Fuys, Geddes, \& Tischler (1988)의 면 접 문항들을 토대로 재구성되었다.
3) 설문지 검사

설문지 검사의 목적은 각각의 학습 도구의 사용과 학습 방법에 대한 학생들의 생각과 반 응을 조사하는 것이고, 설문지 문항은 6개의 Likert-type 문항(1점: 매우 그렇지 않다, 2점: 그렇지 않다, 3 점: 그저 그렇다, 4점: 그렇다, 5점: 매우 그렇다)과 4 개의 열린 문항으로 구성 되었다.
4. 연구절차

본 연구를 시행하기 전에 연구자는 연구에 참여한 Wernimont교사의 본 연구에 대한 이 해를 돕기 위해서 연구 배경이나 목적 등을 상세하게 설명해주고 연구자가 개발한 수업안과 학생 활동 자료 및 활동지에 대해서 논의가 이루어졌다. 또한 Wernimont교사의 GSP 사용 법에 대한 사전 지식 및 경험 유무를 체크하여 GSP 집단의 수업을 진행하는데 어려움이 없 도록 하였다. 연구자는 연구에 참여한 모든 학생들에게 본 연구의 목적, 절차 등에 대해서 구두로 설명하고 연구 참여에 대한 학생 동의서, 학부모 동의서가 제공, 수집되었다.

실험 처지 전에 두 집단의 동질성의 여부를 판단하기 위한 보충 자료로 학생들의 이전 학 년(7학년) 수학 과목에 대한 학업 성취도(Minnesota Comprehensive Assessments: MCA 자 료가 사용됨), 성별, 인종 등의 자료가 수집되었다.

1) 사전 검사
(1) 사전 학업 성춰도 검사

연구 대상으로 선정된 5개 학급을 대상으로 연구의 첫 날에 30분 동안 실시되었다. 검사 를 실시하기 전에 사전 검사의 목적, 검사의 내용, 답안 쓰는 요령 등에 대해서 두 집단에 있는 학생들 모두에게 동일하게 설명하여 검사 환경에서 차이가 나지 않도록 하였다.
(2) 사전 면접

매칭(matching) 방법에 의해서 두 집단으로부터 총 12 명의 면접 대상자가 선정되었다. 사 전 학업 성춰도 검사 후 실시된 개별 학생 면접은 반 구조화된 면접법으로 약 35-40분 동 안 진행되었다. 모든 면접 내용들은 학생들의 동의하에 기록 및 녹음 되었고 후에 연구자와 영어를 모국어로 사용하는 전문 번역가(transcriber)에 의해서 타이핑되었다.
2) 실험 처치

실험 처치는 1 주일에 평균 4 시간씩(수업 시간: 48 분) 14 일 동안 본 수업시간에 이루어져 졌다. 각 집단의 수업은 본 연구자에 의해서 개발된 사각형 학습에 대한 각 집단별 수업안 과 학생 활동지를 토대로 진행되었다. GSP 집단은 주 학습 도구로 GSP가 제공되었고, PP 집단은 자와 각도기가 제공되었다. 단, 14 차시의 수업에 제공된 프로젝트는 두 집단 모두 자 와 각도기를 사용해서 수행하도록 하였다. GSP 집단의 경우 1 차시 수업을 시작하기 전과 각 차시의 중간 중간에 GSP 사용법에 대한 교육이 시행되었다.

비록 두 집단에 제공된 학습 도구와 학생 활동지의 형태면에서는 차이가 있었지만, 두 집 단은 공통된 학습 목표 하에서 같은 교과 내용을 학습하였다. 각 차시별 학습 목표는 <표 $2>$ 과 같다. 두 집단의 각 차시별 수업은 구성주의 관점을 반영한 수업방식으로 진행되었다. 즉, 매 수업시간은 학생들의 개별 탐구 활동, 조별 탐구 및 토론 활동을 중심으로 전개되었 다. 교사는 학생들의 탐구 활동 및 조별 협력학습이 활발하게 이루어 질 수 있도록 학생들 을 격려하고 메타인지의 이동과 같은 교수학적 변환 현상이 일어나지 않도록 학생들의 학습 을 안내하고 통제하는 역할을 수행하였다.
<표 2> 각 차시별 학습 내용

차시	학습목표
1-3	여러 종류의 사각형(일반적 사각형, 정사각형, 마름모, 직사각형, 평행사변형, 사다리 꼴)에 대한 자유 탐구하기. 각각의 종류의 사각형들 사이의 성질을 발견하고, 그들 사 이의 포함 관계를 조사하기.
4-5	개념지도 (concept map) 또는 벤 다이어그램 (venn diagram)을 이용하여 사각형들을 분류하고, 1 차시의 내용을 토대로 각가의 종류의 사각형에 대한 정의 써보기.
6-8	각각의 종류의 사각형의 대각선의 성질 탐구하기.
9-11	사각형의 성질이나 그 대각성의 성질을 이용하여 각각의 종류의 사각형 작도하기.
12-13	각가의 종류의 사각형에 대해서 사가형의 변의 중점을 연견하여 (중점싸가형을 작도 하고 그 사작형의 성질과 이름을 발견하기.
14	각각의 종류의 사각형을 이용해서 교실을 장식할 매력적인 디자인 만들기 프로젝트.

연구자는 연구 기간 동안 연구에 참여한 5 개 학급의 수학 수업에 모두 참관하여 수업 진 행 상황, 교사와 학생들 간의 상호작용(interaction), 학생들의 학습 활동에 대한 반응이나 학습 태도 등을 관찰하고 관찰지에 기록하였다. 또한 학생들이 학습 도구의 사용법이나 학 습지 활동에 대해 부연 설명이 필요할 때 본 연구자는 학습 보조자 또는 안내자로서 학생들 의 학습 활동을 도와주었다. 그러나 연구자는 직접적으로 학생들의 개념 학습에 관여하지는 않았다.
3) 사후 검사
(1) 사후 학업 성취도 검사

사후 학업 성춰도 검사는 학생 개별검사와 조별검사의 두 부분으로 이루어졌고 14 차시의 수업 후 이틀 동안 진행되었다. 개별검사는 30 분 동안 진행되었고, 조별검사는 그 다음날 25 분 동안 진행되었다. 조별검사 시 두 집단에 있는 학생들에게 자와 각도기가 제공되었다.
(2) 사후 면접

사후 학업 성춰도 검사 후 사전 면접에 참여했던 12 명의 학생들 모두 사후 면접에 참여하 였다. 사후 면접은 사전 면접과 마찬가지로 반 구조화된 면접법으로 약 35-40분 동안 진행 되었다. 모든 면접 내용들은 학생들의 동의하에 기록 및 녹음 되었고 후에 연구자와 영어를 모국어로 사용하는 전문 번역가(transcriber)에 의해서 타이핑되었다.
(3) 설문지

학생들이 조별 사후 성춰도 검사를 마친 후에 두 집단에 있는 모든 학생들에게 설문지가 제공되었다. 설문지는 익명으로 작성하도록 하여 학생들이 보다 자유롭게 자신의 의견이나 느낌을 표현하도록 하였다.

IV. 자료 분석과 결과

1. 통계적 분석법을 이용한 사전, 사후 학업 성취도 검사 자료 분석

연구 문제 1 을 해결하기 위해서 사전, 사후 학업 성춰도 검사 자료가 통계적 분석법을 이 용해서 분석되었다. 먼저 사전, 사후 학업 성취도 검사의 신뢰도가 Cronbach's Alpha를 토 대로 측정되었다. 사전, 사후(개별 평가 부분) 학업 성취도 검사의 신뢰도 계수는 0.7 이상이 었으나 사후 학업 성취도 검사의 소집단 평가 부분에서는 낮은 Cronbach's Alpha(0.57)가 나타났다. 그러므로 본 연구자는 사후 학업 성취도 검사의 소집단 평가 결과는 연구 문제에 대답하기 위한 자료로 활용하지 않기로 하였다.

두 집단 간의 사후 학업 성취도가 통계적으로 유의미하게 다른지 조사하기 위해서 학생들 의 사후 학업 성취도 검사 자료가 유의수준 $\mathrm{p}<.05$ 에서 공분산 분석법(analysis of covariance)에 의해서 분석되었다. 이 때, 두 집단을 통계적으로 동등하게 만들기 위해서 학 생들의 사전 학업 성취도 검사 점수와 학생들의 이전 학년 성취도인 MCA 점수가 공변량 (covariates)으로 사용하였다.
<표 3>에서 볼 수 있듯이 GSP 집단의 사후 학업 성취도가 PP 집단의 성취도 보다 높았 고 공분산 분석 결과에 의하면(<표 4>) 두 집단 간의 성취도 사이에서 통계적으로 유의미 한 차이가 있었다 $(\mathrm{F}(1,96)=5.76, \mathrm{p}=.019)$. 즉, GSP 집단의 성취도가 PP 집단의 성취도 보 다 유의미하게 높았다. 이는 GSP를 활용한 학습 환경이 그것을 사용하지 않은 학습 환경보 다 사각형 학습에 대한 학생들의 이해 및 성춰도를 높이는데 더 효과적이라고 해석된다.
<표 $3>\mathrm{PP}$ 집단과 GSP 집단 간의 사후 학업 성취도 검사 결과

집단	N	평균	표준편차	보정된 평균
PP 집단	40	44.49	19.34	45.73
GSP 집단	57	49.25	26.13	52.48

<표 4> PP 집단과 GSP 집단 간의 사후 학업 성취도 검사에 대한 공분산 분석 결과의 요약

	제곱합(SS)	자유도	평균제곱 (MS)	F	p
사전 학업 성취도 검사	377.99	1	377.99	2.81	.097
이전 학년 성취도(MCA)	5530.97	1	5530.97	41.16	.000
집단	773.72	1	773.72	5.76	.019

2. 면접 자료 분석

면접 자료는 학생들의 van Hiele 수준과 관련해서 분석되었다. van Hieles는 한 수준을 달성하지 못한 학생들은 다음 상위 수준에서 사고를 할 수 없다고 주장하였지만 여러 연구 자들(예를 들면, Usiskin, 1982; Mayberry, 1983; Gutiérrez, Jaime, \& Fortuny, 1991; Mason, 1995; Gutiérrez \& Jaime, 1998)은 van Hieles의 주장에 모순되는 결과들을 발견하 였다. 예를 들면, Gutiérrez, Jaime, \& Fortuny(1991)는 낮은 수준보다 높은 수준의 문제를 더 잘 해결하는 학생들을 발견하였고, Mason(1995) 또한 제 3수준을 완벽하게 달성한 학생 들이 제 1,2 수준을 완벽하게 달성하지 못한 경우를 발견하였다. 본 연구자 또한 본 연구에 들어가기 전 실시 된 예비 연구에서 위의 연구자들이 발견한 결과와 비슷한 학생들을 발견 하였다. 그러므로 본 연구에서는 학생들의 최종 van Hiele 수준이 결정되기 보단 각 van Hiele 수준에 대한 학생들의 달성도("수준에 달성하지 못 함", "낮은 정도의 달성도", "중간 정도의 달성도", "높은 정도의 달성도", "완벽한 정도의 달성도")가 조사되었다.
학생들의 면접 자료는 Gutiérrez, Jaime, \& Fortuny(1991)에 의해서 개발되어진 van Hiele 수준 및 달성도 분석법에 따라서 분석되었고 본 연구에서는 van Hiele 제 1수준부터 3수준 까지만 고려되었다.

1) 면접 자료 분석 절차

면접에 참가한 학생들의 van Hiele 수준을 결정하기 위해서 연구자들에(Hoffer, 1981; Fuys, Geddes, \& Tischler, 1988; Gutiérrez \& Jaime, 1998; Gutiérrez, Jaime, \& Fortuny, 1991)의해서 제시되어진 van Hiele 수준별 특성을 토대로 본 연구 주제와 관련해 van Hiele 제 1 수준부터 3 수준까지의 특성표가 만들어졌고 다음과 같다.

제 1 수준:

- 각각의 종류의 사각형을 구성 요소나 성질에 대한 고려 없이 사각형을 전체적인 시각적 외관에 따라서 인식한다.
-표준적인 용어 또는 비표준적인 용어를 적절히 사용하여 각각의 종류의 사각형의 이름 을 말할 수 있다.
- 사각형의 외관적 형태를 이용하여 각각의 종류의 사각형을 말로 묘사할 수 있다.
- 학생들은 사각형을 그리거나 주어진 도형을 복사할 수 있다.
- 사각형들을 분류할 때, 관련된 성질이나 구성요소의 특징보다는 시각적 외관에 의존한 불필요한 요소들에 중점을 둔다.
- 각각의 종류의 사각형에 대해서 구성요소에 대한 성질들을 분석하지는 못 한다.
- 각각의 종류의 사각형을 외관상의 모습을 사용하여 정의한다.

제 2수준:

- 사간형들의 구성 요소들을 인식한다.
- 사각형들의 구성 요소와 그들의 성질들을 기하학적 용어를 사용하여 표현한다.
- 사각형의 구성 요소들 사이의 관계를 이용하여 두 종류의 사각형을 비교한다.
- 사각형을 구성 요소의 성질에 따라서 분류한다.
- 각각의 종류의 사각형들을 구성 요소들의 성질을 이용해서 묘사하고 그린다.
- 관찰과 실혐을 통해서 각각의 종류의 사각형들의 성질들을 발견하고 그 성질을 일반화 한다.
- 사각형의 구성 요소들의 성질들을 논리적으로 관련지을 수 없다.
- 사각형들 사이의 포함관계를 설명할 수 없다.
- 각각의 종류의 사각형에 대한 수학적 정의를 내릴 수 없고, 형식적 정의를 사용할 수 없다. 각 사각형에 대한 형식적 정의를 만들도록 요청되었을 때, 학생들은 그 사각형에 대한 성질들을 나열하거나, 불필요한 성질들을 이용하여 정의를 만든다.

제 3수준:

- 각각의 종류의 사각형의 집단을 특성 지을 수 있는 성질들을 인식한다.
- 각각의 종류의 사각형을 특성 지을 수 있는 최소한의 성질들을 인식한다.
- 각각의 종류의 사각형에 대한 수학적 정의를 내릴 수 있고, 형식적 정의를 사용할 수 있다.
- 정의를 다른 식으로 표현하는 것을 받아들이고 이해한다.
-사각형들 사이의 논리적 포함관계를 이해하고 사각형의 구성 요소들의 성질들 사이의 관계 또한 이해한다.
- 비형식적 수준의 논증은 만들 수 있지만 형식적 수준의 증명 활동은 할 수 없다.

위의 특성들을 토대로 면접 문항에 대한 학생들의 van Hiele수준이 결정되었다. 그 후, 학 생들의 각 van Hiele 수준에 대한 달성도를 조사하기 위해서 학생들의 대답은 수학적 정확 도와 완성도에 따라서 Gutiérrez, Jaime, \& Fortuny(1991)에 의해서 개발되어진 8타입의 대 답 형태로 분류되었다. 8 종류의 대답 형태는 다음과 같다.

- 타입 0. 무응답 또는 (타입 1-7로)코드화 될 수 없는 응답.
- 타입 1. 학습자가 주어진 수준을 달성하지 못했지만 주어진 수준보다 낮은 수준에 대한 정보도 제공하지 않는 응답.
- 타입 2. 주어진 수준에 대한 어느 정도의 암시를 주고 있으나 틀리고 불충분하게 설명 된 응답. 정확하지 않고 불충분한 설명, 추론 과정, 결과를 포함하는 응답.
- 타입 3. 주어진 수준에 대한 어느 정도의 암시를 주고 정확하나 불충분하게 설명된 응 답. 약간의 설명, 조직화되지 않은 추론과정, 또는 상당히 완성되지 않은 결과를 포함하는 응답.
- 타입 4. 두 개의 연속적인 van Hiele 수준을 명확히 반영하고 명확한 추론 과정과 충분 한 설명을 포함하는 정확하거나 부정확한 응답.
- 타입 5. 명확히 한 수준을 반영하는 부정확한 응답. 완벽하나 부정확한 추론 과정을 나 타내는 응답 또는 정확한 추론 과정을 나타내고 있으나 언급되어진 문제의 해

결로 이끌지 못하는 응답.

- 타입 6. 명확하게 주어진 수준을 반영하나 완벽하지 않거나 불충분하게 설명되어진 정 확한 응답.
- 타입 7. 명확하게 주어진 수준을 반영하고 있는 정확하고, 완벽하고, 충분하게 설명된 응답. (Gutiérrez, Jaime, \& Fortuny, 1991, p. 240)

위의 8타입의 응답들을 van Hiele 수준 달성도와 관련지어 나타내면 타입 0과 1은 "수준 에 달성하지 못함" 을 나타내고, 타입 2 와 3은 "낮은 정도"를, 타입 4는 "중간 정도"를, 타 입 5 와 6 은 "높은 정도", 타입 7 은 "완벽한 정도"의 달성도를 나타낸다(Gutiérrez, Jaime, \& Fortuny, 1991, p. 241). 그들은 자료 분석의 용이성을 위해서 5 단계의 달성도를 다음과 같이 숫자로 나타냈다. 한 수준의 달성 정도를 0 부터 100 으로 볼 때, 범위 [0-15]는 그 수준을 달 성하지 못함이고, 범위 (15-40)는 낮은 정도를, [40-60]은 중간 정도를, (60-85)는 높은 정도 를, [85-100]은 완벽한 정도의 달성도를 나타낸다고 하였다. 아래의 <표 $5>$ 와 같이 그들은 각 응답 타입에 무게를 배정해 달성도와 관련지어 숫자화 하였다.
<표 5> 응답 타입의 무게 (Gutiérrez, Jaime, and Fortuny, 1991, p. 241)

타입	0	1	2	3	4	5	6	7
무게	0	0	20	25	50	75	80	100

연구자는 각 면접 문항에 대한 학생들의 응답에 하나의 벡터(van Hiele 수준, 응답 타입) 를 부여하였고, 한 수준에 대한 학생들의 최종 달성도는 그 수준에서 응답될 수 있는 모든 문항에 대한 벡터들의 무게의 평균으로 산출되었다.
아래의 <표 6>은 사전 면접에 참가한 한 학생의 van Hiele 수준에 대한 달성도를 산출하 기 위해 각 문항에 대한 학생의 응답에 대한 벡터(van Hiele 수준, 응답 타입)를 나타낸 예 이다. 아래의 학생은 사다리꼴의 성질을 나열하도록 요청하는 질문(2e)에 사다리꼴의 외관상 모습에만 의존하여 사다리꼴을 묘사하였으므로 그 학셍의 van Hiele 수준은 1수준으로 해석 되었고 제 1 수준에서 그 학생은 완벽하게 주어진 질문에 응답하였으므로 응답 타입 7이 결 정되었다.
<표 7>은 위 학생의 각 응답 벡터의 무게와 각 van Hiele 수준에 대한 최종 달성도를 나 타낸다. <표 $7>$ 에 따르면 그 학생은 완벽하게 van Hiele 제 1 수준(100)을 달성하였고, 제 2 수준(35)과 3수준(18)에 대해서는 낮은 정도의 달성도를 보인다.
<표 6> 학생의 응답에 대한 벡더

$\begin{aligned} & \text { 평가 } \\ & \text { 문항 } \end{aligned}$	1.분류/ 인식	2.성질 나열					3. 포함관계						4. 정의				
		2a	2b	2 c	2d	2 e	3a	3b	3c	3d	3 e	3 f	4 a	4b	4c	4d	4 e
수준	2	2	2	2	2	1	2	3	1	2	2	3	2	3	2	1	1
타입	4	4	6	4	4	7	4	0	7	4	4	7	4	7	4	7	7

<표 7> 학생의 벡터 무게 및 최종 수준 달성도

평가	1. 분류 인식	2.성질 나열					3. 포함관계						4. 정의					
문항		2a	2b	2c	2d	2 e	3 a	3b	3c	3d	3 e	3 f	4 a	4b	4 c	4d	4 e	평균
수준1	100	100	100	100	100	100	100	100	100	100	$\begin{gathered} 10 \\ 0 \end{gathered}$	100	100	100	100	100	100	100
수준2	50	50	80	50	50	0	50	-	0	50	50	-	50	-	50	0	0	35
수준3	-	-	-	-	-	-	0	0	0	0	0	100	0	100	0	0	0	18

이런 방식으로 사전 면접에 참가한 모든 학생들의 van Hiele 제 1 수준부터 3수준까지의 달성도가 조사되었다.
2) 사전 면접 결과
<표 8>은 사전 면접에 참가한 학생들의 van Hiele 수준 달성도를 조사한 결과이다.
<표 8> van Hiele 수준 달성도에 대한 사전 면접 결과

van Hiele 수준 달성도								
집단	van Hiele 수준	전혀 달성 못함	낮음	중간	높음	완벽		
PP	1	0	0	0	1	5		
	2	1	1	3	1	0		
	3	3	3	0	0	0		
	1	0	0	0	1	5		
	2	1	3	1	1	0		
	3	2	3	1	0	0		

PP 집단의 6 명의 학생 중 5 명이 van Hiele 제 1 수준을 완벽하게 달성하였고 1 명은 높은 달성도를 보여주었다. GSP 집단 또한 5명이 van Hiele 제 1 수준을 완벽하게 달성하였고 1 명은 높은 달성도를 보여주었다. van Hiele 제 2수준에 대해서는 PP집단의 6명 중 누구도 완벽하게 달성하지 못 했다. 한 명은 높은 정도, 3 명은 중간정도, 1 명은 낮은 정도의 달성도 를 보여주었고, 나머지 1 명은 전혀 달성하지 못 하였다. GSP 집단의 면접자 중에서도 제 2 수준을 완벽하게 달성한 학생은 없었다. 한 명은 높은 정도, 1 명은 중간 정도, 세 명은 낮은 정도의 달성도를 보여주었고, 나머지 1 명은 전혀 달성하지 못 하였다. 제 3 수준에 대해서는 PP 집단의 3 명의 학생은 낮은 달성도를 보였고, 나머지 3 명은 제 3 수준을 전혀 달성하지 못 했다. GSP 집단에서는 1 명은 중간 정도를, 3 명은 낮은 정도를 나머지 2 명은 전혀 달성하지 못 하였다. 실험 처지 전 두 집단의 van Hiele 수준 달성도는 크게 다르지 않았다.
사전 면접의 결과 두 집단에 있는 학생들 사이에서 공통적으로 발견되는 개념에 대한 오 류가 있었다. 학생들이 가장 많이 범하는 오류는 직사각형의 성질을 묻는 질문에 12 명의 학 생 중 10 명의 학생이 한 종류의 표준형 직사각형의 변의 길이에 대한 성질을 직사각형 전체 집단의 성질로 일반화하는 경향이었다. Monaghan(2000) 또한 학생들이 한 종류의 표준형 직사각형의 변의 길이에 대한 성질을 직사각형 전체 집단의 성질로 일반화 하는 경향이 있

다고 지적하였다. 그런 오류를 범하는 학생들은 직사각형은 항상 긴 한 쌍의 변과 짧은 한 쌍의 변을 갖고 있어야 하며 직사각형의 네 변의 길이는 같을 수 없다고 대답하였다. 직사 각형의 성질들 중에서 직사각형을 정의하기 위해 최소한으로 필요한 성질이 무엇인지를 묻 는 질문에 그들 중 대부분이 길이의 성질(한 쌍의 긴 변과 한 쌍의 짧은 변)을 언급했다. 사 전 학업 성취도 검사에서도 많은 학생들이 비숫한 오류를 갖고 있음을 알 수 있었다(<그림 $1>$ 참조).

<그림 1> 직사각형의 정의를 묻는 사전 학업 성춰도 문항에서 학생 답안 예시
몇몇 학생들은 직사각형의 네 각은 항상 직각임을 알고 있었지만 그들에게 직사각형의 변 의 길이에 대한 성질이 각의 크기에 대한 성질보다 더 중요하게 생각되었다. 그들의 마음속 에 자리 잡고 있는 표준형 직사각형에 대한 이미지가 학생들의 사고 과정에 강력하게 영향 을 끼치는 것 같았다.

마름모의 성질을 묻는 질문에도 많은 학생들이 비슷한 개념 오류를 보여주었다. 먼저 직 사각형과 정사각형의 경우와는 달리 12 명 중 3 명의 학생이 '마름모' 라는 수학적 용어를 사 용할 수 없었다. 그들은 마름모를 다이아몬드 모양 또는 기울어진 정사각형이라고 불렀다. 마름모의 성질을 묻는 질문에 면접에 참가한 대부분의 학생들이 마름모의 성질과는 관련이 없는 각의 크기에 대해서 강조했다. 그들은 마름모의 너 각은 직각이 될 수 없고 마름모는 항상 한 쌍의 둔각과 한 쌍의 예각을 갖는다고 말하였다. 왜 마름모의 네 각이 직각이 될 수 없는지 물었을 때, 한 학생은 다음과 같이 말하였다.

연구자: 왜 마름모의 네 각이 직각이 될 수 없을까요? 그 이유를 말해보겠어요?
학 생: 네, 마름모는 다이아몬드처럼 생겼기 때문에 네 각은 직각이 될 수 없어요.
그리고 위와 아래에 있는 각들이 양 옆에 있는 두 각보다 작아야 합니다. 만약에 네 각이 직각이 된다면 그것은 마름모가 아니라 정사각형입니다.

이 학생의 대답에서 알 수 있듯이 학생들의 마음속에 자리 잡고 있는 다이아몬드 형태의 표준형 마름모의 이미지 (<그림 2> 참조)가 마름모의 성질을 추론하는데 강력하게 작용한 것 같다. 또한 학생들이 사용하는 언어가 어떻게 개념 형성에 영향을 미칠 수 있는지도 알 수 있었다. 마름모라는 용어 대신 다이아몬드 모양이라는 용어를 사용하는 학생들은 모든

[^1]마름모의 형태가 꼭 다이아몬드처럼 생겨야 한다고 인식하는 것 같았다.
면접에 참여한 학생의 절반가량이 사다리끌의 이름을 말하고 성질을 설명하는데 어려움을 보여주었다. 특히 그들은 ‘사다리끌'이라는 수학적 용어를 전혀 사용하지 못 했다. 사다리꼴 이라는 용어를 제시했을 때, 그들은 사다리꼴이 어떻게 생긴 도형인지는 알고 있는 듯 했으 나 사다리꼴의 성질을 말로 설명하는데 어려움을 느꼈다. 한 학생은 다음과 같이 말하였다. "저는 사다리꼴이 어떻게 생긴 도형인지 알고 있어요. 그러나 이 도형의 성질을 어떻게 말 로 설명할지 모르겠어요." 그 학생은 말로 설명하는 대신 그림으로 사다리꼴(표준형 등변사 다리꼴)을 그려 보여주었고, 모든 사다리꼴은 그런 형태여야 한다고 강조하였다.
다른 절반의 학생들은 사다리꼴이란 용어를 사용할 줄 알았고 사다리꼴의 성질을 설명할 수 있었다. 그러나 그들은 앞의 직사각형과 마름모의 경우처럼 표준형 등변사다리꼴의 성질 을 사다리꼴 전체 집단의 성질로 일반화 하는 경향을 보여주었다. 다음은 연구자와 학생들 의 대화 내용의 일부이다.

연구자: 사다리꼴의 성질을 말해보겠어요?
학 생1: 사다리꼴의 윗변과 아랫변은 평행하고, 아랫변의 길이는 윗변의 길이보다 깁니 다. 그리고 옆에 있는 두 변은 평행하지 않으나 길이는 같아야 합니다.
연구자: (등변사다리꼴이 아닌 사다리꼴을 보여주면서) 이 도형도 사다리꼴인가요? 학 생1: (잠시 생각을 한 후).. 음..그것도 사다리꼴 같아요. 그러나 확실하지는 않아요.

연구자: (등변사다리꼴이 아닌 사다리꼴을 보여주면서) 이 도형도 사다리꼴인가요? 학 생2: 그건 사다리꼴이 아니에요.
연구자: 왜 사다리꼴이 아니지요? 그 이유를 설명해보겠어요?
학 생2: 이 도형의 옆의 두 변의 길이는 같지 않기 때문에 이건 사다리꼴이 아닙니다.
연구자: (한 밑각이 직각인 사다리꼴을 가리키면서)그러면 이 도형은 사다리꼴인가요?
학 생2: 아니요. 사다리꼴의 두 밑각은 직각이 될 수 없어요. 왜냐하면 두 변이 항상 같은 정도로 기울어져있어야 하니까요.
3) 사후 면접 결과

학생들의 van Hiele수준과 각 수준(제 1수준-제 3수준)에 대한 달성도가 사전 면접 자료 분석 절차와 같은 방법으로 조사되었다. <표 $9>$ 는 사후 면접에 참가한 학생들의 van Hiele 수준 달성도를 조사한 결과이다.
<표 9> van Hiele 수준 달성도에 대한 사후 면접 결과

van Hiele 수준 달성도							
집단	van Hiele 수준	전혀 달성 못함	낮음	중간	곺음	완벽	
PP	1	0	0	0	0	6	
	2	0	0	2	2	2	
	3	0	3	1	2	0	
GSP	1	0	0	0	0	6	
	2	0	0	0	4	2	
	3	0	0	1	2	3	

PP 집단의 6 명의 학생과 GSP 집단의 6 명의 학생 모두 van Hiele 제 1 수준을 완벽하게 달성하였다. van Hiele 제 2수준에 대해서는 PP 집단의 6 명 중 2 명은 중간 정도, 2 명은 높 은 정도, 2 명은 완벽한 정도의 달성도를 보였다. GSP 집단에서는 6 명 중 4 명은 높은 정도를 나머지 2 명은 완벽한 정도의 달성도를 보였다. 제 3 수준에 대해서는 PP 집단의 3 명은 낮은 정도, 1 명은 중간 정도, 2 명은 높은 정도의 달성도를 보였다. 반면, GSP 집단에서는 1 명은 중간정도를, 2 명은 낮은 정도의, 3 명은 완벽한 정도의 달성도를 보여주었다.

실험 처치 전과 비교했을 때, 학습 후 두 집단 모두에서 학생들의 van Hiele 수준(제 1수 준-3수준)달성도는 향상되었다. 하지만 <표 $9>$ 에서 볼 수 있듯이, GSP 집단에 있는 학생들 이 PP 집단에 있는 학생들보다 제 2 수준과 제 3 수준에 대한 달성도가 높았다. 예를 들면, PP 집단에서는 제 3 수준을 완벽하게 달성한 학생이 없는 반면, GSP 집단에서는 6 명 중 3 명 의 학생이 제 3 수준을 완벽하게 달성하였다. GSP를 사용한 학습 환경이 자와 각도기의 사 용한 학습 환경보다 van Hiele 제 2,3 수준의 추론 능력을 향상시키는데 더 효과적인 것 같 다. 또한, 그 소프트웨어의 사용이 학생들의 사각형의 성질과 정의에 관련된 오개념을 바로 잡는데 있어서도 더 효과적이었다. 예를 들면, 두 개의 표준형 직사각형, 정사각형, (정사각 형이 아닌) 마름모 중에서 직사각형을 모두 선택하도록 요청하였을 때, PP 집단에서는 6 명 중 3 명의 학생이 두 개의 표준형 직사각형만을 선택하였다. 그들 모두 정사각형은 네 변의 길이가 같으므로 직사각형이 될 수 없다고 답하였다. 그들은 여전히 직사각형의 네 변의 길 이는 같을 수 없다고 생각하는 것 같았다. 반면, GSP 집단에서는 6 명 중 단 한명만이 PP 집단의 학생들과 같은 이유로 두 개의 표준형 직사각형만이 직사각형이라고 답하였다. PP 집단과 GSP 집단의 차이는 정사각형과 직사각형의 포함관계를 묻는 질문에서 더욱 명확하 게 관찰되었다.
(1) 정사각형은 항상 직사각형인가?
(2) 직사각형은 때때로 정사각형이 될 수 있나?

PP 집단에서는 6 명 중 어떤 학생도 그 질문 모두에 정확하게 답하고 설명할 수 없었다. PP 집단의 4 명의 학생이 두 개의 질문 중 하나에 정확하게 답하고 이유를 설명 할 수 있었 고, 나머지 2 명의 학생은 두 개의 질문 모두에 틀린 답과 부적절한 이유를 제시하였다. 그러 나 GSP 집단에서는 1 명을 제외한 5 명의 학생들이 두 질문 모두에 정확한 답과 적절한 이유 를 제시할 수 있었다. PP 집단의 학생들은 여전히 표준형 직사각형의 이미지에 대한 의존도 를 보여주었다. PP 집단의 학생들은 직사각형의 성질을 발견하기 위해서 정사각형을 포함한 여러 형태의 직사각형을 탐구하여 성질을 발견하는 학습을 하였고, 학습 당시 그들은 자신 들의 오개념을 수정하는 것 같았지만 학습이 끝난 후 사후 면접 시에 그들은 사전 면접 당 시 갖고 있던 오개념으로 돌아가는 것 같았다. 그들의 직사각형에 대한 사전 지식과 표준형 직사각형에 대한 강한 이미지가 학생들의 개념의 재정립 과정을 방해하는 것 같았다. 반면 5 명의 GSP 집단의 학생들은 사전 면접 때와는 달리 한 형태의 직사각형의 이미지에 대한 의존도를 보여주지 않았다. 그들은 직사각형 전체 집단의 일반화된 성질을 이용하여 직사각 형과 정사각형의 관계를 논리적으로 추론하였다.

정사각형과 마름모의 포함 관계를 묻는 질문에서도 PP 집단에서는 2 명의 학생이 두 도형 사이의 관계를 논리적으로 설명 할 수 있었으나 GSP 집단에서는 4명의 학생이 두 도형사이

의 관계를 논리적으로 설명할 수 있었다.
두 집단 모두에서 학생들은 도형의 구성 요소의 성질들 사이의 관계에 대한 추론을 요구 하는 질문에 어려움을 느끼고 있었다. 각각의 종류의 사각형을 정의하기 위해 필요한 최소 필수 성질들을 나열하도록 요청하는 질문에 각각의 집단에서 약 절반가량의 학생들은 van Hiele 제 2수준의 특징을 보여주었다. 그들은 각 도형의 성질들을 모두 나열하면서 그들 모 두 필요하다고 대답하였다. PP 집단에서는 단 한 명의 학생만이 직사각형과 평행사변형을 정의하기 위해서 필요한 최소한의 성질을 제시하였고, 왜 그 성질들이 두 도형을 정의하기 위해서 충분한지 설명하였다. PP 집단의 다른 2 명의 학생들 또한 최소 필수 성질은 제시하 였으나 왜 그 성질들이 두 도형들을 정의하기 충분한지에 대한 이유를 설명할 수 없었다. 그들이 도형의 성질들 사이의 관계에 대해서 추론을 할 수 없었다는 점을 고려핟 때, 그들 의 답변은 각 도형의 정의에 대한 암기 학습의 결과로 해석되었다. GSP 집단의 경우 3 명의 학생이 최소 필수 성질들을 제시하였고, 3 명 중 2 명의 학생은 부분적으로 성질들 사의의 관 계를 설명할 수 있었다. 다음은 연구자와 한 학생의 대화 내용의 일부이다.

연구자: 평행사변형의 성질들을 모두 말해보세요.
학 생: 평행사변형의 마주보는 변은 평행하고, 마주보는 각의 크기가 같고. 변의 길이 도 같아요.
연구자: 잘 했습니다. 그러면 그 성질들 중에서 평행사변형을 정의하기 위한 최소 필수 성질은 무엇인가요? 앞에서 언급한 성질들 모두가 필요한가요?
학 생: 아니요, 마주보는 변이 평행이라는 성질만 필요합니다.
연구자: 단지 그것만 필요한가요? 아니면 마주보는 각에 대한 성질도 필요할까요?
학 생: 아니요, 마주보는 두 변이 평행하면 항상 마주보는 각의 크기도 같기 때문에 필요하지 않아요. 첫 번쩨 성질은 두 번쩨 성질을 포함하고 있어요.
연구자: 그러면 마주보는 변의 길이의 성질은 어떤가요?
학 생: 음...이 성질도 필요없어요. 왜냐하면...(머못거리며) 이유는 잘 설명할 수 없지 만.. 평행사변형을 정의하기 위해서는 마주보는 변이 평행이라는 성질만 필요 해요.

3. 학생들의 사각형 학습에서 The Geometer's Sketchpad의 역할

사후 학업 성춰도 검사 결과 및 면접 결과에 따르면 GSP 의 사용이 학생들의 사각형 학습 에 대한 이해를 발달시키고 추론능력을 향상시키는데 자와 각도기의 사용보다 더 효과적이 었다. 또한 그 소프트웨어의 사용은 학생들이 기존에 가지고 있던 사각형에 대한 오개념을 수정하여 개념을 재정립하는데 있어서도 도움이 되었다.
GSP는 Dienes의 수학적 다양성의 원리를 반영한 교수•학습 과정을 진행하는데 보다 효 과적인 도구가 될 수 있었다. 예를 들면, 직사각형의 성질에 대한 학습 과정에서 PP 집단은 비표준형 직사각형을 포함한 3 종류의 직사각형의 변의 길이나 각의 크기를 직접 재는 활동 을 통하여 직사각형 집단의 일반적인 성질을 발견하는 학습을 하였다. 반면 GSP 집단은 연 구자에 의해서 미리 만들어진 한 종류의 표준형 직사각형을 사용하여 학생들 스스로 그 직 사각형의 꼭짓점들을 드래그 (drag) 함으로서 변화되어지는 무한하고 다양한 직사각형들의 모 습과 그에 따라 변화되어지는 변의 길이나 각의 크기를 관찰하면서 직사각형 집단에 대한 일반적인 성질을 발견하였다. 비록 두 집단에 있는 학생들은 직사각형 집단의 일반적인 성

질을 유추하기 위해서 다양한 종류의 직사각형을 탐구할 기회가 주어졌지만 GSP 집단의 역 동적이고 풍부한 경험이 PP 집단에게 제공된 한정적인 경험보다 개념을 형성하고 일반화 하는데 있어서 더욱 효과적이었다.

특히 GSP 의 드래그 $(\mathrm{drag}$) 기능은 학생들이 수학적 개념에 대해서 탐구하고 추측하고 확인 하는 3 단계의 추론 과정을 보다 손쉽게 해주고, 그런 추론 활동은 학생들의 논리적인 추론 능력을 항상 시킬 뿐 아니라, 개념적 오류를 바로 잡는데 있어서도 효과적이었다. 예를 들 면, 직사각형과 정사각형의 포함 관계를 탐구하기 위해서 GSP 집단의 학생들은 직사각형과 정사각형의 꼭짓점들을 드래그(drag)하면서 각각의 도형들이 어떻게 변하는지 관찰하면서 두 도형사이의 관계를 발견할 수 있었다. 학생들은 직사각형의 꼭짓점을 드래그 (drag) 하여 서 직사각형을 정사각형으로 변형시킬 수 있었고 그들은 직사각형의 네 변의 길이가 같게 될 때, 그것은 정사각형이 된다는 사실을 확인할 수 있었다. 이런 경험들은 학생들이 기존에 가지고 있던 개념적 오류(예, 직사각형의 네 변의 길이는 절대 같을 수 없다)들을 인식할 수 있는 기회를 제공할 뿐 아니라, 학생들 스스로 자신의 지식체계를 재정립 하는데 도움이 되 었다.

4. 각 학습 도구에 대한 학생들의 반응

사후 설문 조사 결과에 의하면 각각의 집단에서 사용되어진 학습 도구 및 학습 활동들이 학생들의 사각형 학습에 대한 이해를 돕는데 효과적인지를 묻는 Likert-type문항(1점: 매우 그렇지 않다, 2점: 그렇지 않다, 3점: 그저 그렇다, 4점: 그렇다, 5점: 매우 그렇다)에 GSP 집 단의 평균은 4 에 가까운 반면 PP 집단의 평균은 3 에 가까웠다. GSP 집단에 있는 학생들의 61% 가 GSP 를 사용한 활동이 학생들의 사각형 학습에 대한 이해를 향상시키는데 효과적이 었다고 응답한 반면, PP 집단에서는 약 41% 의 학생들이 자와 각도기를 이용한 활동이 그들 의 사각형 학습에 대한 이해를 향상시키는데 효과적이었다고 응답하였다. GSP 집단에서는 12% 의 학생들이, PP 집단에서는 19% 의 학생들이 각 도구의 사용에 대해서 부정적인 반응 을 보여주었다.

GSP 집단의 학생들이 PP 집단의 학생들 보다 협력 학습 분위기에 더 긍정적인 반응을 보였다. 협력 학습 분위기를 좋아하는지에 대한 문항에 GSP 집단의 평균은 4에 가까웠으나 PP 집단의 평균은 3 에 가까웠다. GSP 집단의 59% 의 학생들이 협력 학습에 대해서 긍정적 인 반응을 보인 반면 PP 집단에서는 41% 의 학생들이 긍정적인 반응을 보여주었다. GSP 집 단의 17% 의 학생들이, PP 집단에서는 27% 의 학생들이 협력 학습 분위기에 대해서 부정적 인 반응을 보여주었다. 즉 GSP가 협력 학습 분위기를 조성하는데 더 효과적으로 사용된 것 같다.

사후 면접에 참여한 학생들에게 각각의 집단에 사용된 학습 도구 및 학습 활동에 대한 의 견을 물었는데, 대부분의 학생들이 질문에 긍정적인 반응을 보여주었다. PP 집단의 경우 자 와 각도기를 이용한 조작 활동(hands-on experience)이 학생들의 사각형에 대한 개념 이해 를 발달시키는데 도움이 되었다고 응답하였고, GSP 집단의 경우도 GSP가 제공하는 많은 구체적 예들이 사각형에 대한 학생들의 이해를 향상시키고 그들이 기존에 가지고 있던 개념 적 오류를 바로잡는데도 도움이 되었다고 대답하였다. 다음은 PP 집단과 GSP 집단에 있는 학생들의 면접 내용 중 일부를 발쳬한 것이다.

Abstract

저는 전에 직사각형의 성질에 대해서 학습한 경혐이 있습니다. 그러나 그때는 직사각형은 항상 긴 두변과 짧은 두변을 갖는 줄 알았습니다. 직사각형의 네 변의 길이가 같을 수 있다 는 사실을 전혀 몰랐습니다. 그러나 이번에 직사각형의 변의 길이가 때때로 같을 수 있고

 그때 그것은 정사간형이라는 것을 알게 되었습니다. -PP 집단의 학생 A때때로 반복적인 자와 각도기로 재는 활동이 지루하기도 하였지만 그것은 새로운 경험이 었습니다. 전에 한 번도 그런 경험을 한 적이 없었습니다. 그런 활동들이 제가 사각형들에 대해서 이해를 하는데 도움이 된 것 같습니다. -PP 집단의 학생 B

저는 7학년 때 수학 선생님께서 직사각형은 때때로 정사각형이 된다고 가르쳐 주신걸 기 억합니다. 그러나 그때 저는 왜 그렇게 되는지 이유는 몰랐습니다. 이번에 the Geometer's Sketchpad와 함께 왜 직사각형이 때때로 정사각형이 되는지를 알 수 있었습니다. -GSP 집 단의 학생 C

교실에서 선생님의 말씀을 듣고 필기하는 것 보다 컴퓨터실에서 자유롭게 친구들과 공부 하는 것이 횔씬 좋았습니다. The Geometer's Sketchpad는 도형을 관찰하고 도형들을 정확 하게 작도하기 위한 멋진 컴퓨터 프로그램이었습니다. -GSP 집단의 학생 D

V. 결론 및 제언

본 연구는 8학년 학셍들의 사각형 학습에 대한 이해력과 기하학적 추론 능력을 향상시키 기 위해서 역동적인 컴퓨터 소프트웨어인 GSP의 사용이 전통적인 학습 도구인 자와 각도기 의 사용보다 더 효과적인지 조사하고, 또한 어똫게 그 소프트웨어의 사용이 학생들의 사각 형에 대한 개념 학습에 영향을 끼쳤는지를 연구하였다.

본 연구는 학생들의 사후 학업 성취도 검사, 사전•사후 면접, 사후 설문지 자료 분석으로 부터 다음과 같은 결론을 얻었다.
첫째, 공분산 분석법(analysis of covariance)에 의한 학생들의 사후 학업 성춰도 검사 결 과에 따르면, 학생들의 성춰도에 있어서 GSP를 사용했던 집단과 자와 각도기를 사용했던 집단 사이에서 통계적으로 유의미한 차이가 발견되었다. GSP 집단의 사후 학업 성취도 PP 집단의 성춰도 보다 유의미하게 높았다. 이는 GSP 가 제공되는 학습 환경이 자와 각도기가 제공되는 학습 환경보다 학생들의 사각형 학습을 위해서 더 효과적이었음을 나타낸다.

둘째, 12 명의 학셍 면접 결과에 따르면, GSP 집단의 학생들이 PP 집단의 학생들보다 van Hiele 2 와 3 수준에서 더 높은 정도의 달성도를 보여주었다. 이 결과는 학생들의 기하학적 추론 능력을 향상시키는데 있어서 GSP의 사용이 전통적인 학습 도구였던 자와 각도기의 사 용보다 더 효과적이었음을 보여준다.

셋째, GSP의 사용은 학생들이 가지고 있던 수학적 개념에 대한 오류를 스스로 깨닫게 하 여 학생들의 개념 재정립 과정을 도와주었다. 특히 그 소프트웨어가 제공하는 드래그(drag) 기능은 학생이 수학적 개념을 추상화 - 일반화 하는데 효과적으로 사용될 수 있었다.

다음은 어뚷게 GSP의 사용이 학생들의 각 종류의 사각형에 대한 이해와 추론 능력의 향

상에 영향을 끼쳤는지에 대한 결과 분석의 요약이다.
첫째, GSP가 제공하는 수학적 개념에 대한 역동적인 시각적 효과와 조작 경험이 각 종류 의 사각형의 성질에 대한 개념적 이해와 사각형들 사이의 관계를 개념적으로 접근하도록 하 는데 중요한 역할을 하였다. 학생들 스스로 컴퓨터 마우스를 통해 도형의 꼭짓점을 드래그 (drag)하여 매 순간 순간마다 생산되어지는 수많은 예들을 관찰하면서 그 도형에 대한 개념 적 이해를 발달시켰다. GSP가 제공하는 수학적 개념에 대한 시각적 효과와 조작 경험은 전 통적인 교과서가 제공하는 시각적 효과나 경험과는 다른 효과를 보여주었다. 즉 학생들 스 스로 직사각형의 꼭짓점을 드래그 (drag)하여 그것을 정사각형으로 변화시키는 활동을 경험 한 것과 직사각형의 한 예로 정사각형 그림을 본 경험 사이의 학습 효과는 다르게 나타났 다. 전자의 활동이 직사각형에 대한 학생들의 개념 형성 및 개념적 이해에 더 긍정적인 영 향을 끼쳤다.

둘째, GSP에 의해서 제공 되어지는 수학적 개념에 대한 수많은 예 또는 이미지들이 학생 들이 기존에 갖고 있던 그 개념에 대한 오류를 확인하게 하고 개념을 재정립하는데 도움을 주었다. 학생들이 수학적 개념을 일반화하고 추상화하기 위해서는 충분하고 다양한 경험이 필요하다. 하지만 교과서가 제공하는 시각적 모델에 의존한 교육 환경에서 학생들에게 그러 한 경험을 제공하는 것은 쉽지 않을 것이다. 이런 이유로 많은 학생들은 각각의 종류의 사 각형의 표준형 이미지만을 기억하며 그런 표준형 이미지로의 고착 현상이 학생들이 개념을 보다 일반화하고 추상화하는 과정을 방해할 뿐 아니라 학생들이 오개념을 형성하도록 하는 것 같았다.

셋째, GSP 의 사용이 학생들의 학습 환경을 보다 활기차고 적극적으로 만들어 학생들의 학습 효과를 향상시켰다. 비록 두 집단 모두에서 소집단 활동을 통한 협력 학습이나 토론 활동이 적극적으로 권장되었지만, GSP 집단의 학생들이 보다 적극적으로 협력 학습에 참여 하였고 학생들 사이의 의사소통 활동도 보다 활발히 이루어졌다. 연구의 초기에는 학생들은 주로 그 소프트웨어의 사용법에 대해서 서로 대화를 하기 시작하였으나, 점차 시간이 지나 면서 그들의 관심은 자신들이 발견한 도형이나 자신들이 작도한 도형 또는 작도법으로 옮겨 졌다.

본 연구를 결과를 토대로 몇 가지 제언을 하고자 한다.
먼저, 많은 학생들이 사각형에 대해서 오개념을 갖고 있음이 발견되었다. 그들의 공통점은 한 종류의 표준형 이미지를 그 개념 전체의 집단으로 성급하게 일반화하는 경향이 있었다. 각각의 종류의 사각형의 성질이나 그들 사이의 관계에 대한 개념적 이해를 위해서는 Dienes가 제시한 수학적 다양성의 원리를 토대로 한 학습 환경이나 학습 자료 개발이 필요 하다.

본 연구에 의하면 GSP 의 사용이 학생들의 사각형 학습 및 기하학적 추론 능력의 향상에 있어서도 긍정적인 역할을 하였으나, 교사는 테크놀로지의 사용이 학생들의 학습에 부정적 인 결과를 초래할 수도 있음을 인지해야 한다. GSP의 사용에 어려움을 느끼는 학생들에게 GSP는 오히려 학생들에게 학습 방해물로 작용하기도 하였다. 이런 경우 학생들의 관심이 수학학습 보다는 학습 도구 자체로 읆겨져 학생들의 학습이 제대로 이루어지지 않았다. 테 크놀로지가 올바로 사용되기 위해서는 무엇보다 교사는 학생들이 테크놀로지의 사용법을 익 히기 위해 충분한 기회를 제공해야 하며, 학생들에 대한 주의 깊은 관찰과 관심이 필수적이 다.

비록 본 연구는 두 종류의 학습 도구(GSP, 자 와 각도기)의 효과를 비교/대조하기 위해서 각각의 집단에 한 종류의 학습 도구를 제공하였다. 그러나 Dienes가 제시한 4 가지 학습 원 리 중 또 다른 하나인 지각적 다양성의 원리(the perceptual variability principle)에 의하면 학습자의 개념 형성 과정에서 개인차를 존중하고 학습자의 개념의 추상화를 돕기 위해서 그 개념은 다양한 학습 도구를 사용해서/다양한 구조로 표현되어야 한다. 본 연구에서는 각각 의 집단에서 그 집단에서 사용된 학습 도구에 대해서 부정적인 반응을 보인 학생들이 발견 되었다. 즉, 어떤 학생들에게는 컴퓨터 소프트웨어의 사용이 개념 형성에 도움이 된 반면, 다른 학생에게는 컴퓨터 소프트웨어의 사용보다는 자와 각도기나 또 다른 형태의 학습 도구 의 사용이 도움이 될 수 있을 것이다. 학생들의 개인차를 존중해주고 다양한 물리적 경험으 로부터 수학적 개념의 추상화 과정을 돕기 위해서 GSP뿐만 아니라 자와 각도기, 기하판, 속 성 블럭 등의 다양한 학습 도구를 사용할 것을 제안한다.

참고문헌

권성룡 • 김남균 • 류성림 • 박성선 (2006). 테크놀로지와 함께 하는 수학교육, 서울, 경문사.
전영국 (1999). 교육용 소프트웨어의 활용에 관한 질적연구, 학교수학, 제1권, 제2호, 433-449.
황혜정 • 나귀수 • 최승현 • 박경미 • 임재훈 • 서동엽 (2005). 수학교육학신론, 서울, 문음사.
Bennett, D. (2002). Exploring geometry with the Geometer's Sketchpad, Calif.: Key Curriculum Press.
Blume, G. W., Galindo, E., \& Walcott, C. (2007). Performance in measurement and geometry from the viewpoint of Principles and Standards for School Mathematics. In P. Kloosterman and F. K. Lester Jr.(Eds.), Results and interpretations of the 2003 mathematics assessment of the national assessment of educational progress (pp. 95-138). Reston, VA: NCTM.
Burger, W., \& Shaughnessy, J. M. (1986). Characterizing the van Hiele levels of development in geometry. Journal for Research in Mathematics Education, 17, 3148.

Campbell, D., \& Stanley, J. (1963). Experimental and quasi-experimental designs for research. Boston: Houghton Mifflin.
Choi-Koh, S. S. (1999). A student' learning of geometry using the computer. Journal of Educational Research, 92 (5), 301-311.
Connell, M. L. (1998). Technology in constructivist mathematics classrooms. Journal of Computers in Mathematics and Science Teaching, 17, 311-338.
Dienes, Z. (1960). Building up Mathematics. London: Hutchinson Educational Ltd.
Fuys, D., Geddes, D., \& Tischler, R. (1988). The Van Hiele model of thinking in geometry among adolescents. Journal for Research in Mathematics Education: Monograph Number 3.
Gutiérrez, A., \& Jaime, A. (1998). On the assessment of the van Hiele levels of reasoning. Focus on Learning Problems in Mathematics, 20(2,3), 27-45.

Gutiérrez, A., Jaime, A., \& Fortuny, J. (1991). An alternative paradigm to evaluate the acquisition of the van Hiele levels. Journal for Research in Mathematics Education, 22, 237-251.
Hoffer, A. (1981). Geometry is more than proof. Mathematics Teacher, 74, 11-18.
Hoffer, A. (1983). Van Hiele based research. In R. Lesh, and M. Landau (Eds.), Acquisition of mathematics concepts and processes (pp. 205-227). New York: Academic Press.
Jackiw, N. (2001). The Geometer's Sketchpad(Version 4.0) [Computer software]. Emeryville, CA: Key Curriculum Press, Software.
Jiang, Z. (2002). Developing preservice teachers' mathematical reasoning and proof abilities in the Geometer's Sketchpad environment. In D.S. Mewborn, P.Sztajn, D.Y. White, H.G. Wiegel, R.L. Bryant, \& K.Nooney (Eds.), Proceedings of the 24th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, vol. 2 (pp. 717-729). Athens, GA
Jones, E. D., \&. Southern, W. T. (2003). Balancing perspectives on mathematics instruction. Focus on exceptional children, 35(9), 1-17.
Liu, L., \& Cummings, R. (2001). A learning model that stimulates geometric thinking through use of PC Logo and Geometer's Sketchpad. Computers in the Schools, 17(1-2), 85-104
Marrades, R. \& Gutiérrez, A. (2000). Proofs produced by secondary school students learning geometry in a dynamic computer environment. Educational Studies in Mathematics, 44, 87-125.
Mason, M. M. (1995). Geometric understanding in gifted students prior to a formal course in geometry. Paper presented at the 17th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, October 21-24, 1995, Columbus, OH. (ERIC Document Reproduction Service No. ED 389 568)
Mayberry, J. (1983). The van Hiele levels of geometric thought in undergraduate preservice teachers. Journal for Research in Mathematics Education, 14(1), 58-69.
McClintock, E., Jiang, Z., \& July, R. (2002). Students' developmentof three-dimensional visualization in the Geometer's Sketchpad environment. In D. S. Mewborn, P. Sztajn, D. Y. White, H. G. Wiegel, R. L. Bryant, \& K. Nooney(Eds.), Proceedings of the 24th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education vol. 2, (pp. 739-754). Athens, GA
Monaghan, F. (2000). What difference it make? Children's views of the differences between some quadrilaterals. Educational Studies in Mathematics, 42, 179-196.
NAEP Questions: Released Main NAEP Questions (1990-2006; grades 4, 8, and 12) Retrieved October 10, 2006 from http://nces.ed.gov/nationsreportcard/itmrls/ startsearch.
National Council of Teachers of Mathematics. (2000). Principles and standards for
school mathematics. Reston, VA: NCTM.
Phye, G. D. (1997). Handbook of academic learning: Construction of knowledge. San
Diego: Academic Press.
Post, T. (1992). Some notes on the nature of mathematics learning. In T. Post (Ed.), Teaching mathematics in grades K-8: Research based methods(pp. 1-22). Boston: Allyn \& Bacon.
Santos-Trigo, M. (2004). The role of dynamic software in the identification and construction of mathematical relationships. Journal of Computers in Mathematics and Science Teaching, 23(4), 399-413.
Senk, S. L. (1989). Van Hiele levels and achievement in writing geometry proofs. Journal for Research in Mathematics Education, 20, 309-321.
TIMSS Mathematics items for the Middle School Years: Released Set for Population 2 (Seventh and Eighth Grade). Retrieved October, 10, 2006 from http://isc.bc.edu/timss1995i/Items.html.
Usiskin, Z. (1982). van Hiele levels and achievement in secondary school geometry (Final report of the Cognitive Development and Achievement in Secondary School Geometry Project). Chicago: University of Chicago. (ERIC Document Reproduction Service No. ED220 288)
van Hiele, P. M. (1986). Structure and insight: A theory of mathematics education. New York: Academic Press.
Wirszup, I. (1976). Breakthroughs in the psychology of learning and teaching geometry. In J. I. Martin, \& D. A. Bradbard.(Eds.), Space and geometry: Papers from a Research Workshops (pp. 75-97). Columbus, OH: ERIC Center for Science, Mathematics and Environment Education.

The Geometer's Sketchpad를 활용한 8학년 학생들의 사각형 학습
 The Use of the Geometer's Sketchpad in Eighth-Grade Students' Quadrilateral Learning

Han, Hyesook ${ }^{2)}$

Abstract

The purposes of the study were to investigate whether the use of the Geometer's Sketchpad(GSP) is more effective than the use of traditional tools such as ruler and protractor to enhance eighth- grade students' understanding of quadrilaterals and geometric reasoning ability and to examine how the use of the software affects on the development of students' understanding and reasoning ability. According to the results of the posttest, there was a significant difference in student achievement between students using GSP and students using ruler and protractor. Students using GSP significantly outperformed students using ruler and protractor on the posttest. Student interview data showed that the use of the GSP was more effective in developing students' geometric reasoning ability. Students using GSP achieved higher degrees of acquisition for van Hiele level 2 and 3 than students using ruler and protractor. Dynamic visual representations and hands-on experiences provided in GSP learning environment helped students approach quadrilateral concepts more conceptually and realize their pre-existing conceptual errors and re-conceptualize their mathematical ideas.

Key Words : Quadrilateral learning, The Geometer's Sketchpad (GSP), Ruler and protractor, Geometric reasoning ability, van Hiele levels, Degree of acquisition

[^2]<부록 1> 사후 학업 성춰도 검사지
Class period:
Student ID:

For questions 1-3, read each set of properties and list the letter for each quadrilateral above that has all those properties. Then give the name that is MOST PRECISE for that kind of quadrilateral.

1. Two pairs of parallel sides, Opposite angles equal, Opposite sides equal Figures:

Name of quadrilateral that fits all shapes identified: (Hint: they are all polygons and quadrilaterals. What other most precise name fits all these shapes?)
2. Adjacent sides perpendicular, Opposite sides parallel

Figures:

Name of quadrilateral that fits all shapes identified: (Hint: they are all polygons and quadrilaterals. What other most precise name fits all these shapes?)
3. Opposite angles equal, All sides equal

Figures:

Name of quadrilateral that fits all shapes identified: (Hint: they are all polygons and quadrilaterals. What other most precise name fits all these shapes?)

Some of the items were © 1980 The University of Chicago, Reprinted with permission of the University of Chicago.

For questions 4-6, tell whether each statement is True or False. Explain your answer. (Imagine the shapes in your mind to help you answer the questions)
4. If a shape is a square, then it is always a rectangle: Explain your answer:
5. A rectangle is sometimes a rhombus:

Explain your answer:
6. A trapezoid is sometimes a parallelogram:

Explain your answer:
7. A quadrilateral MUST be a parallelogram if it has
A) One pair of adjacent sides equal
B) One pair of parallel sides
C) A diagonal as axis of symmetry
D) Two adjacent angles equal
E) Two pairs of parallel sides
8. Which of the following is NOT a property of every rectangle?
A) The opposite sides are equal in length.
B) The opposite sides are parallel.
C) The opposite sides are parallel.
D) All sides are equal in length.
E) The diagonals are congruent.
9. Which of the following is NOT a property of every rhombus?
A) The opposite sides are parallel.
B) The opposite angles are equal in measure.
C) The diagonals always bisect each other.
D) The diagonals are always congruent.
E) The diagonals are always perpendicular.
10. What do all rectangles have that some parallelograms do not have?
A) Opposite sides equal.
B) Diagonals congruent.
C) Opposite sides parallel.
D) Opposite angles equal.
E) None of A) - D).
11. A certain 4 -sided figure has the following properties.

- Only one pair of opposite sides is parallel.
- Only one pair of opposite sides is equal in length.
- The parallel sides are not equal in length.

Which of the following must be true about the sides that are equal in length?
A) They are perpendicular to each other.
B) They are each perpendicular to an adjacent side.
C) They are equal in length to one of the other two sides.
D) They are not equal in length to either of the other two sides.
E) They are not parallel.

12. In the figure above, WXYZ is a parallelogram. Which of the following is Not necessarily true?
A) Side WX is parallel to side ZY.
B) Side XY is parallel to side WZ.
C) The measures of angles W and Y are equal.
D) The lengths of sides WX and $Z Y$ are equal.
E) The lengths of sides WX and XY are equal.

13. In the five quadrilaterals shown above, the midpoints of the sides have been joined by line segments. Which best describes the five midpoint quadrilaterals?
A) All are parallelograms.
B) All are rectangles.
C) All are squares.
D) All are rhombuses.
E) No generalization can be made.
14. You are talking with your friend over the phone and you wanted to describe a rectangle using minimum properties (definition). What could you say about it?
15. The polygon partially hidden behind the screen is a quadrilateral. Tell what types of quadrilaterals (most precise name) could be hidden behind the screen. Explain your reasoning. Find as many as you can and draw them.

[^3]
[^0]: 1) 고려대학교 교과교육연구소 (hanhyesuk@hanmail.net)
[^1]: <그림 2> 다이아몬드 형태의 표준형 마름모

[^2]: 2) Korea University Center for Curriculum and Instruction Studies (hanhyesuk@hanmail.net)
[^3]: Some of the items were © 1980 The University of Chicago, Reprinted with permission of the University of Chicago.

