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ON GENERIC SUBMANIFOLDS WITH SASAKIAN
STRUCTURE OF Sn( 1√

2
) × Sn( 1√

2
)

Yong Ho Shin

Abstract. Let M be a generic submanifold of Sn ×Sn. If M admits an

Sasakian structure, then M is a Brieskorn manifold.

1. Diferential geometry of Sn × Sn

In 1973, K. Yano [1] proved that the (f, g, u, v, λ)-structure induced on
Sn × Sn. In this paper, we consider the global form of generic submanifolds
with sasakian structure of Sn × Sn. Consider an Sn( 1√

2
) × Sn( 1√

2
) in E2n+2

covered by a system of coordinate neighborhoods {U ×V ; xh}, where here and
in the sequel the indices h, i, j, k, l,m, n, . . . run over the range {1, 2, 3, . . . , 2n}
and denote by ∇i the operator of covariant differentiation with respect to the

Christoffel symbols { h
j i

} formed with gji.

Then we have, so called an (f, g, u, v, λ)-structure,

(1.1)


f i

jf
h
i = −δh

j + uju
h + vjv

h,

uif
i
j = λvj , fh

i ui = −λvh, vif
i
j = −λuj , fh

i vi = λuh,

uiu
i = viv

i = 1 − λ2, uiv
i = 0,

fm
j f l

igml = gji − ujui − vjvi.

where fji = f l
jgli is skew-symmetric in j and i.

Denoting by hji and kji the component with respect to the unit normals,
then we have, hji = gji,

(1.2)


∇jf

h
i = −gjiu

h + δh
j ui − kjiv

h + kh
j vi,

∇jui = fji − λkji,

∇jvi = −kjlf
l
i + λgji,

∇jλ = −2vj .

Y. H. Shin and T. H. Kang [2] researched the condition that a real hypersurface
of Sn × Sn becomes a Brieskorn manifold.
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We introduce the following Theorem A for later use.

Theorem A ([2]). Let M be a hypersurface of Sn( 1√
2
) × Sn( 1√

2
) (n > 1)

with (f, g, u, v, w, λ, µ, ν)-structure, and let M admits an almost contact metric
structure (fa

b , gcb, p
a), pa being a killing vector. Then M as a submanifold of

codimension 3 of a (2n + 2)-dimensional Euclidean space E2n+2 is an inter-
section of a complex cone with generator C and a (2n + 1)-dimensional unit
sphere S2n+1(1), that is, a Brieskorn manifold B2n−1.

2. Generic submanifolds of Sn( 1√
2
) × Sn( 1√

2
) admitting an almost

contact metric structure

Let M be an m-dimensional Riemannian manifold covered by a system of
coordinate neighborhoods {Ũ ; ηa} and isometrically immersed in Sn( 1√

2
) ×

Sn( 1√
2
) by the immersion

ι : M → Sn(
1√
2
) × Sn(

1√
2
),

where, here and in the sequel, indices a, b, c, d and e run the range {1, 2, . . . , n}.
We identify ι(M) with M itself and represent the immersion locally by

Xh = Xh(ηa).

If we put Bh
c = ∂cX

h(∂c = ∂/∂ηc), then Bh
c are m linearly independent vectors

of Sn( 1√
2
)×Sn( 1√

2
) tangent to M which span the tangent space at every point

of M.
Denoting by gcb the Riemannian metric tensor of M , we have gcb = gjiB

j
cB

i
b

since the immersion is isometric.
We denote by Ch

x 2n − m mutually orthogonal unit normals of M . (In the
sequel, the indicies x, y, z and u run over the range {m + 1, · · · , 2n}.)

gjiB
j
bC

i
x = 0

and the metric tensor g∗ induced on the normal bundle of M from the metric
tensor gji of Sn( 1√

2
) × Sn( 1√

2
) has components gxy given by

gxy = gjiC
j
xCj

y = δxy,

δxy being the kronecker delta.
By the denoting ∇c the operator of covariant differentiation with respect to

gcb the equations of Gauss and Weingarten are respectively given by

(2.1) ∇cB
h
b = hx

cbC
h
x ,∇cC

h
y = −ha

c yBh
a ,

where hx
ch are components of the second fundamental tensor of M with respect

to the normals Ch
x and

ha
cy = hx

cbg
bagxy,

gba being contravariant components of the metric tensor of M.
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Now, we consider the submanifold M of Sn( 1√
2
) × Sn( 1√

2
) which satisfies

Np(M)⊥f(Np(M))

at each point p of M , where Np(M) denotes the normal space of M at p, f
being the structure tensor of Sn( 1√

2
) × Sn( 1√

2
).

Such a submanifold is called generic (or antiholomorphic) submanifold ([3]).
From now on, we consider generic submanifold immersed in Sn( 1√

2
)×Sn( 1√

2
).

Then we can put in each coordinate neighborhood.

fh
j Bj

c = fa
c Bh

a − fx
c ch

x,(2.2)

fh
j Cj

x = fa
xBh

a ,(2.3)

uh = uaBh
a + uxCh

x ,(2.4)

vh = vaBh
a + vxCh

x ,(2.5)

where fa
c is a tensor field of type (1,1) defined on M , fx

c a local 1-form for each
fixed index x,va and va vector fields, ux and vx functions for fixed index x, and

fa
x = fy

c gacgyx.

Applying f to (2.2)-(2.5) succesively and using (1.1), we find respectibely

fa
c f b

a = −δb
c + ucu

b + vcv
b + fx

c f b
x,(2.6)

fe
c fx

e = −(ucu
x + vcv

x),(2.7)
fe

xfa
e = uaux + vavx,(2.8)

fe
xfy

e = δy
x − uxuy − vxvy,(2.9)

uefa
e = −λva − uxfa

x ,(2.10)
uefx

e = λvx,(2.11)
vefa

e = λua − uxfa
x ,(2.12)

vefx
e = −λux,(2.13)

uaua + uxux = vava + vxvx = 1 − λ2, uava + uxvx = 0.(2.14)

Putting fcb = fa
c gab, fcx = fy

c gyx and fxc = fa
xgac, we can easily find

(2.15) fcb = −fbc, fcx = fxc

By differentiating (2.4) covariantly, we obtain

(2.16) ∇cu
a = fa

c − λka
c + ha

c xux

by means of (1.2) and (2.1).
Suppose that the generic submanifold M of Sn( 1√

2
) × Sn( 1√

2
) admits an

almost contact metric structure (fa
c , gcb, p

a). Then, we have

(2.17)

{
fe

b fa
e = −δa

b + pbp
a, fa

e pe = 0, pef
e
b = 0,

pep
e = 1, gdef

d
c fe

b = gcb − pcpb,

where pc is a 1-form associated with the vector field pa given by pc = pagac.
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On the other hand, comparing (2.6) with the first equation of (2.17), we find

(2.18) pbp
a = ubu

a + ubv
a + fx

b fa
x .

Transvecting this with pa, we get

(2.19) pb = Aub + Bvb + Cxfx
b ,

where we have put A = peu
e, B = pev

e and Cx = pafa
x . Also, transvecting pb

gives

(2.20) 1 = A2 + B2 + CxCx,

because of (2.17) contraction (2.18) with respect to the indices b and a yields

1 = ueu
e + vev

e + fbxf bx

or, using (2.9) and (2.14),

(2.21) λ2 + uxux + vxvx =
1
2
(2n − m + 1).

If we transvect (2.18) with ubua and make use of (2.11) and (2.14), then we
find

(2.22) A2 = (1 − λ2 − uxux)2 + (uxvx)2 + λ2(vxvx).

Similarly, transvecting (2.18) with vbva and taking account of (2.13) and (2.14),
we get

(2.23) B2 = (uxvx)2 + (1 − λ2 − vxvx)2 + λ2(uxux).

Transvecting (2.18) with f b
yfy

a and using (2.9), (2.11) and (2.13), we have

CyCy = (λ2 − 2)(vxvx + uxux)

+2(uxux)2 + (uxux)2 + (vxvx)2 + 2n − m,(2.24)

where Cy denotes Cy = fa
y pa.

Tranvecting the second equation of (2.17) with fy
a , we find

Aux + Bvx = 0

with the aid of (2.8), from which,

(2.25)

{
A(uxux) + B(uxvx) = 0,

A(uxvx) + B(vxvx) = 0.

Substituting (2.22), (2.23) and (2.24) into (2.20) gives

1 = 2 + 2n − m + 2(λ4 − 2λ2)
+2{2(uxvx)2 + (uxux)2 + (vxvx)2}(2.26)
+4(λ2 − 1)(uxux + vxvx).

Let’s set (2.21) by

(2.27) λ2 + uxux + vxvx =
1
2
(2n − m + 1) = 1 + β,
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where β is a nonegative constant. Thus (2.26) reduces to

β(1 + β) = 2
[
(uxux)(vyvy) − (uxvx)2

]
.

If β is positive, then we have

(2.28) (uxux)(vyvy) − (uxvx)2 > 0.

So, it follows from (2.25) that

A = B = 0.

Hence we have from (2.22), ua = 0. Therefore, this together with (2.16) gives

fa
c = 0,

which contradict to the fact that fa
c has a maximal rank. And consequently

β must be zero. Hence we can see from(2.27) that M is a hypersurface of
Sn( 1√

2
) × Sn( 1√

2
). Thus we have

Theorem 2.1. Let M be a generic submanifold of Sn( 1√
2
)×Sn( 1√

2
). If M ad-

mits an almost contact metric structure, then M is a hypersurface of Sn( 1√
2
)×

Sn( 1√
2
).

Finally, let M admits a Sasakian structure, that is, the given structure
admits an almost metric structure (fa

c , gcb, p
a) and

(2.29) ∇cf
a
b = −gcbp

a + δa
c pb.

From (2.17) and (2.29), we get

∇cpa = fca,

which shows that pa is a killing vector because fca is skew-symmtric with
respect to a and c. Combing Theorem A and Theorem 2.1 with the fact that
pa is a killing vector, we find

Theorem 2.2. Let M be a generic submanifold of Sn( 1√
2
)× Sn( 1√

2
) (n > 1).

If M admits a Sasakian structure (fa
b , gcb, p

a), then M as a submanifold of
codimension 3 of a (2n + 2)-dimensional Euclidean space E2n+2 is an inter-
section of a complex cone with generator C and a (2n + 1)-dimensional unit
sphere S2n+1(1), that is, a Brieskorn manifold B2n−1.
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