ON GENERIC SUBMANIFOLDS WITH SASAKIAN STRUCTURE OF $S^{n}\left(\frac{1}{\sqrt{2}}\right) \times S^{n}\left(\frac{1}{\sqrt{2}}\right)$

Yong Ho Shin

Abstract. Let M be a generic submanifold of $S^{n} \times S^{n}$. If M admits an

 Sasakian structure, then M is a Brieskorn manifold.
1. Diferential geometry of $S^{n} \times S^{n}$

In 1973, K. Yano [1] proved that the (f, g, u, v, λ)-structure induced on $S^{n} \times S^{n}$. In this paper, we consider the global form of generic submanifolds with sasakian structure of $S^{n} \times S^{n}$. Consider an $S^{n}\left(\frac{1}{\sqrt{2}}\right) \times S^{n}\left(\frac{1}{\sqrt{2}}\right)$ in $E^{2 n+2}$ covered by a system of coordinate neighborhoods $\left\{U \times V ; x^{h}\right\}$, where here and in the sequel the indices $h, i, j, k, l, m, n, \ldots$ run over the range $\{1,2,3, \ldots, 2 n\}$ and denote by ∇_{i} the operator of covariant differentiation with respect to the Christoffel symbols $\left\{{ }_{j}{ }^{h}{ }_{i}\right\}$ formed with $g_{j i}$.

Then we have, so called an (f, g, u, v, λ)-structure,

$$
\left\{\begin{array}{l}
f_{j}^{i} f_{i}^{h}=-\delta_{j}^{h}+u_{j} u^{h}+v_{j} v^{h}, \tag{1.1}\\
u_{i} f_{j}^{i}=\lambda v_{j}, f_{i}^{h} u^{i}=-\lambda v^{h}, v_{i} f_{j}^{i}=-\lambda u_{j}, f_{i}^{h} v^{i}=\lambda u^{h}, \\
u_{i} u^{i}=v_{i} v^{i}=1-\lambda^{2}, u_{i} v^{i}=0, \\
f_{j}^{m} f_{i}^{l} g_{m l}=g_{j i}-u_{j} u_{i}-v_{j} v_{i} .
\end{array}\right.
$$

where $f_{j i}=f_{j}^{l} g_{l i}$ is skew-symmetric in j and i.
Denoting by $h_{j i}$ and $k_{j i}$ the component with respect to the unit normals, then we have, $h_{j i}=g_{j i}$,

$$
\left\{\begin{array}{l}
\nabla_{j} f_{i}^{h}=-g_{j i} u^{h}+\delta_{j}^{h} u_{i}-k_{j i} v^{h}+k_{j}^{h} v_{i}, \tag{1.2}\\
\nabla_{j} u_{i}=f_{j i}-\lambda k_{j i}, \\
\nabla_{j} v_{i}=-k_{j l} f_{i}^{l}+\lambda g_{j i}, \\
\nabla_{j} \lambda=-2 v_{j} .
\end{array}\right.
$$

Y. H. Shin and T. H. Kang [2] researched the condition that a real hypersurface of $S^{n} \times S^{n}$ becomes a Brieskorn manifold.

[^0]We introduce the following Theorem A for later use.
Theorem A ([2]). Let M be a hypersurface of $S^{n}\left(\frac{1}{\sqrt{2}}\right) \times S^{n}\left(\frac{1}{\sqrt{2}}\right)(n>1)$ with $(f, g, u, v, w, \lambda, \mu, \nu)$-structure, and let M admits an almost contact metric structure $\left(f_{b}^{a}, g_{c b}, p^{a}\right), p^{a}$ being a killing vector. Then M as a submanifold of codimension 3 of $a(2 n+2)$-dimensional Euclidean space $E^{2 n+2}$ is an intersection of a complex cone with generator C and $a(2 n+1)$-dimensional unit sphere $S^{2 n+1}(1)$, that is, a Brieskorn manifold $B^{2 n-1}$.
2. Generic submanifolds of $S^{n}\left(\frac{1}{\sqrt{2}}\right) \times S^{n}\left(\frac{1}{\sqrt{2}}\right)$ admitting an almost contact metric structure

Let M be an m-dimensional Riemannian manifold covered by a system of coordinate neighborhoods $\left\{\widetilde{U} ; \eta^{a}\right\}$ and isometrically immersed in $S^{n}\left(\frac{1}{\sqrt{2}}\right) \times$ $S^{n}\left(\frac{1}{\sqrt{2}}\right)$ by the immersion

$$
\iota: M \rightarrow S^{n}\left(\frac{1}{\sqrt{2}}\right) \times S^{n}\left(\frac{1}{\sqrt{2}}\right)
$$

where, here and in the sequel, indices a, b, c, d and e run the range $\{1,2, \ldots, n\}$. We identify $\iota(M)$ with M itself and represent the immersion locally by

$$
X^{h}=X^{h}\left(\eta^{a}\right)
$$

If we put $B_{c}^{h}=\partial_{c} X^{h}\left(\partial_{c}=\partial / \partial \eta^{c}\right)$, then B_{c}^{h} are m linearly independent vectors of $S^{n}\left(\frac{1}{\sqrt{2}}\right) \times S^{n}\left(\frac{1}{\sqrt{2}}\right)$ tangent to M which span the tangent space at every point of M.

Denoting by $g_{c b}$ the Riemannian metric tensor of M, we have $g_{c b}=g_{j i} B_{c}^{j} B_{b}^{i}$ since the immersion is isometric.

We denote by $C_{x}^{h} 2 n-m$ mutually orthogonal unit normals of M. (In the sequel, the indicies x, y, z and u run over the range $\{m+1, \cdots, 2 n\}$.)

$$
g_{j i} B_{b}^{j} C_{x}^{i}=0
$$

and the metric tensor g^{*} induced on the normal bundle of M from the metric tensor $g_{j i}$ of $S^{n}\left(\frac{1}{\sqrt{2}}\right) \times S^{n}\left(\frac{1}{\sqrt{2}}\right)$ has components $g_{x y}$ given by

$$
g_{x y}=g_{j i} C_{x}^{j} C_{y}^{j}=\delta_{x y},
$$

$\delta_{x y}$ being the kronecker delta.
By the denoting ∇_{c} the operator of covariant differentiation with respect to $g_{c b}$ the equations of Gauss and Weingarten are respectively given by

$$
\begin{equation*}
\nabla_{c} B_{b}^{h}=h_{c b}^{x} C_{x}^{h}, \nabla_{c} C_{y}^{h}=-h_{c y}^{a} B_{a}^{h} \tag{2.1}
\end{equation*}
$$

where $h_{c h}^{x}$ are components of the second fundamental tensor of M with respect to the normals C_{x}^{h} and

$$
h_{c y}^{a}=h_{c b}^{x} g^{b a} g_{x y},
$$

$g^{b a}$ being contravariant components of the metric tensor of M.

Now, we consider the submanifold M of $S^{n}\left(\frac{1}{\sqrt{2}}\right) \times S^{n}\left(\frac{1}{\sqrt{2}}\right)$ which satisfies

$$
N_{p}(M) \perp f\left(N_{p}(M)\right)
$$

at each point p of M, where $N_{p}(M)$ denotes the normal space of M at p, f being the structure tensor of $S^{n}\left(\frac{1}{\sqrt{2}}\right) \times S^{n}\left(\frac{1}{\sqrt{2}}\right)$.

Such a submanifold is called generic (or antiholomorphic) submanifold ([3]).
From now on, we consider generic submanifold immersed in $S^{n}\left(\frac{1}{\sqrt{2}}\right) \times S^{n}\left(\frac{1}{\sqrt{2}}\right)$. Then we can put in each coordinate neighborhood.

$$
\begin{align*}
f_{j}^{h} B_{c}^{j} & =f_{c}^{a} B_{a}^{h}-f_{c}^{x} c_{x}^{h} \tag{2.2}\\
f_{j}^{h} C_{x}^{j} & =f_{x}^{a} B_{a}^{h} \tag{2.3}\\
u^{h} & =u^{a} B_{a}^{h}+u^{x} C_{x}^{h} \tag{2.4}\\
v^{h} & =v^{a} B_{a}^{h}+v^{x} C_{x}^{h} \tag{2.5}
\end{align*}
$$

where f_{c}^{a} is a tensor field of type $(1,1)$ defined on M, f_{c}^{x} a local 1-form for each fixed index x, v^{a} and v^{a} vector fields, u^{x} and v^{x} functions for fixed index x, and

$$
f_{x}^{a}=f_{c}^{y} g^{a c} g_{y x}
$$

Applying f to (2.2)-(2.5) succesively and using (1.1), we find respectibely

$$
\begin{align*}
f_{c}^{a} f_{a}^{b} & =-\delta_{c}^{b}+u_{c} u^{b}+v_{c} v^{b}+f_{c}^{x} f_{x}^{b} \tag{2.6}\\
f_{c}^{e} f_{e}^{x} & =-\left(u_{c} u^{x}+v_{c} v^{x}\right) \tag{2.7}\\
f_{x}^{e} f_{e}^{a} & =u^{a} u_{x}+v^{a} v_{x}, \tag{2.8}\\
f_{x}^{e} f_{e}^{y} & =\delta_{x}^{y}-u_{x} u^{y}-v_{x} v^{y}, \tag{2.9}\\
u^{e} f_{e}^{a} & =-\lambda v^{a}-u^{x} f_{x}^{a}, \tag{2.10}\\
u^{e} f_{e}^{x} & =\lambda v^{x} \tag{2.11}\\
v^{e} f_{e}^{a} & =\lambda u^{a}-u^{x} f_{x}^{a} \tag{2.12}\\
v^{e} f_{e}^{x} & =-\lambda u^{x}, \tag{2.13}\\
u_{a} u^{a}+u_{x} u^{x} & =v_{a} v^{a}+v_{x} v^{x}=1-\lambda^{2}, \quad u_{a} v^{a}+u_{x} v^{x}=0 . \tag{2.14}
\end{align*}
$$

Putting $f_{c b}=f_{c}^{a} g_{a b}, f_{c x}=f_{c}^{y} g_{y x}$ and $f_{x c}=f_{x}^{a} g_{a c}$, we can easily find

$$
\begin{equation*}
f_{c b}=-f_{b c}, f_{c x}=f_{x c} \tag{2.15}
\end{equation*}
$$

By differentiating (2.4) covariantly, we obtain

$$
\begin{equation*}
\nabla_{c} u^{a}=f_{c}^{a}-\lambda k_{c}^{a}+h_{c x}^{a} u^{x} \tag{2.16}
\end{equation*}
$$

by means of (1.2) and (2.1).
Suppose that the generic submanifold M of $S^{n}\left(\frac{1}{\sqrt{2}}\right) \times S^{n}\left(\frac{1}{\sqrt{2}}\right)$ admits an almost contact metric structure $\left(f_{c}^{a}, g_{c b}, p^{a}\right)$. Then, we have

$$
\left\{\begin{array}{l}
f_{b}^{e} f_{e}^{a}=-\delta_{b}^{a}+p_{b} p^{a}, f_{e}^{a} p^{e}=0, p_{e} f_{b}^{e}=0, \tag{2.17}\\
p_{e} e^{e}=1, g_{d e} f_{c}^{d} f_{b}^{e}=g_{c b}-p_{c} p_{b},
\end{array}\right.
$$

where p_{c} is a 1 -form associated with the vector field p^{a} given by $p_{c}=p^{a} g_{a c}$.

On the other hand, comparing (2.6) with the first equation of (2.17), we find

$$
\begin{equation*}
p_{b} p^{a}=u_{b} u^{a}+u_{b} v^{a}+f_{b}^{x} f_{x}^{a} \tag{2.18}
\end{equation*}
$$

Transvecting this with p^{a}, we get

$$
\begin{equation*}
p_{b}=A u_{b}+B v_{b}+C_{x} f_{b}^{x} \tag{2.19}
\end{equation*}
$$

where we have put $A=p_{e} u^{e}, B=p_{e} v^{e}$ and $C_{x}=p_{a} f_{x}^{a}$. Also, transvecting p^{b} gives

$$
\begin{equation*}
1=A^{2}+B^{2}+C_{x} C^{x} \tag{2.20}
\end{equation*}
$$

because of (2.17) contraction (2.18) with respect to the indices b and a yields

$$
1=u_{e} u^{e}+v_{e} v^{e}+f_{b x} f^{b x}
$$

or, using (2.9) and (2.14),

$$
\begin{equation*}
\lambda^{2}+u_{x} u^{x}+v_{x} v^{x}=\frac{1}{2}(2 n-m+1) . \tag{2.21}
\end{equation*}
$$

If we transvect (2.18) with $u^{b} u_{a}$ and make use of (2.11) and (2.14), then we find

$$
\begin{equation*}
A^{2}=\left(1-\lambda^{2}-u_{x} u^{x}\right)^{2}+\left(u_{x} v^{x}\right)^{2}+\lambda^{2}\left(v_{x} v^{x}\right) \tag{2.22}
\end{equation*}
$$

Similarly, transvecting (2.18) with $v^{b} v_{a}$ and taking account of (2.13) and (2.14), we get

$$
\begin{equation*}
B^{2}=\left(u_{x} v^{x}\right)^{2}+\left(1-\lambda^{2}-v_{x} v^{x}\right)^{2}+\lambda^{2}\left(u_{x} u^{x}\right) . \tag{2.23}
\end{equation*}
$$

Transvecting (2.18) with $f_{y}^{b} f_{a}^{y}$ and using (2.9), (2.11) and (2.13), we have

$$
\begin{align*}
C_{y} C^{y}= & \left(\lambda^{2}-2\right)\left(v_{x} v^{x}+u_{x} u^{x}\right) \\
& +2\left(u_{x} u^{x}\right)^{2}+\left(u_{x} u^{x}\right)^{2}+\left(v_{x} v^{x}\right)^{2}+2 n-m, \tag{2.24}
\end{align*}
$$

where C_{y} denotes $C_{y}=f_{y}^{a} p_{a}$.
Tranvecting the second equation of (2.17) with f_{a}^{y}, we find

$$
A u_{x}+B v_{x}=0
$$

with the aid of (2.8), from which,

$$
\left\{\begin{array}{l}
A\left(u_{x} u^{x}\right)+B\left(u_{x} v^{x}\right)=0 \tag{2.25}\\
A\left(u_{x} v^{x}\right)+B\left(v_{x} v^{x}\right)=0
\end{array}\right.
$$

Substituting (2.22), (2.23) and (2.24) into (2.20) gives

$$
\begin{align*}
1= & 2+2 n-m+2\left(\lambda^{4}-2 \lambda^{2}\right) \\
& +2\left\{2\left(u_{x} v^{x}\right)^{2}+\left(u_{x} u^{x}\right)^{2}+\left(v_{x} v^{x}\right)^{2}\right\} \tag{2.26}\\
& +4\left(\lambda^{2}-1\right)\left(u_{x} u^{x}+v_{x} v^{x}\right) .
\end{align*}
$$

Let's set (2.21) by

$$
\begin{equation*}
\lambda^{2}+u_{x} u^{x}+v_{x} v^{x}=\frac{1}{2}(2 n-m+1)=1+\beta \tag{2.27}
\end{equation*}
$$

where β is a nonegative constant. Thus (2.26) reduces to

$$
\beta(1+\beta)=2\left[\left(u_{x} u^{x}\right)\left(v_{y} v^{y}\right)-\left(u_{x} v^{x}\right)^{2}\right] .
$$

If β is positive, then we have

$$
\begin{equation*}
\left(u_{x} u^{x}\right)\left(v_{y} v^{y}\right)-\left(u_{x} v^{x}\right)^{2}>0 . \tag{2.28}
\end{equation*}
$$

So, it follows from (2.25) that

$$
A=B=0
$$

Hence we have from (2.22), $u_{a}=0$. Therefore, this together with (2.16) gives

$$
f_{c}^{a}=0,
$$

which contradict to the fact that f_{c}^{a} has a maximal rank. And consequently β must be zero. Hence we can see from(2.27) that M is a hypersurface of $S^{n}\left(\frac{1}{\sqrt{2}}\right) \times S^{n}\left(\frac{1}{\sqrt{2}}\right)$. Thus we have
Theorem 2.1. Let M be a generic submanifold of $S^{n}\left(\frac{1}{\sqrt{2}}\right) \times S^{n}\left(\frac{1}{\sqrt{2}}\right)$. If M admits an almost contact metric structure, then M is a hypersurface of $S^{n}\left(\frac{1}{\sqrt{2}}\right) \times$ $S^{n}\left(\frac{1}{\sqrt{2}}\right)$.

Finally, let M admits a Sasakian structure, that is, the given structure admits an almost metric structure $\left(f_{c}^{a}, g_{c b}, p^{a}\right)$ and

$$
\begin{equation*}
\nabla_{c} f_{b}^{a}=-g_{c b} p^{a}+\delta_{c}^{a} p_{b} \tag{2.29}
\end{equation*}
$$

From (2.17) and (2.29), we get

$$
\nabla_{c} p_{a}=f_{c a}
$$

which shows that p^{a} is a killing vector because $f_{c a}$ is skew-symmtric with respect to a and c. Combing Theorem A and Theorem 2.1 with the fact that p^{a} is a killing vector, we find

Theorem 2.2. Let M be a generic submanifold of $S^{n}\left(\frac{1}{\sqrt{2}}\right) \times S^{n}\left(\frac{1}{\sqrt{2}}\right)(n>1)$. If M admits a Sasakian structure $\left(f_{b}^{a}, g_{c b}, p^{a}\right)$, then M as a submanifold of codimension 3 of a $(2 n+2)$-dimensional Euclidean space $E^{2 n+2}$ is an intersection of a complex cone with generator C and $a(2 n+1)$-dimensional unit sphere $S^{2 n+1}(1)$, that is, a Brieskorn manifold $B^{2 n-1}$.

References

[1] Yano. K., Differential geometry of $S^{n} \times S^{n}$, J. Diff. Geo. 8 (1973), 181-206.
[2] S. H. Shin and T. H. Kang, Brieskorn manifold induced in a hypersurface of a product of two spheres, Pusan Kyoungnam Math. J. 11 (1995), no. 2, 351-357.
[3] U. H. Ki, On generic submanifolds with antinormal structure of an odd-dimensional spheres, Kyungpook Math.J. 20 (1980), no. 2, 217-229.

Department of Mathematics, University of Ulsan, Ulsan 680-749, Korea
E-mail address: yhshin@mail.ulsan.ac.kr

[^0]: Received July 2, 2008; Accepted September 5, 2008
 2000 Mathematics Subject Classification. 51M99,53C25.
 Key words and phrases. generic submanifold, sasakian structure.

