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FIXED POINT THEORY FOR INWARD SET VALUED MAPS
IN HYPERCONVEX METRIC SPACES

A. Amini-Harandi, A. P. Farajzadeh, D. O’Regan, and R. P. Agarwal

Abstract. In this paper, we first introduce inwards set valued maps
in hyperconvex metric spaces. Then we present fixed point theory for
continuous condensing inward set valued maps.

1. Introduction and Preliminaries

Let X and Y be topological spaces with A ⊆ X and B ⊆ Y . Let F : X ( Y
be a multimap with nonempty values. The image of A under F is the set
F (A) =

∪
x∈A F (x) and the inverse image of B under F is F−(B) = {x ∈ X :

F (x) ∩ B ̸= ∅}. Now F is said to be:
(i) lower semicontinuous if, for each open set B ⊆ Y , F−(B) = {x ∈ X :

F (x) ∩ B ̸= ∅} is open in X,
(ii) upper semicontinuous, if for each closed set B ⊆ Y , F−(B) = {x ∈ X :

F (x) ∩ B ̸= ∅} is closed in X,
(iii) continuous if, F is both lower semicontinuous and upper semicontinu-

ous.
Let (M,d) be a metric space and B(x, r) = {y ∈ M : d(x, y) ≤ r}, denotes the
closed ball with center x and radius r. Let

co(A) =
∩

{B ⊆ M : B is a closed ball in M such that A ⊂ B}.

If A = co(A), we say that A is admissible subset of M . Note, co(A) is admissible
and the intersection of any family of admissible subsets of M is admissible. Note
an admissible set is bounded. The following definition of a hyperconvex metric
space is due to Aronszajn and Pantichpakdi [3].

Definition 1.1. A metric space (M,d) is said to be a hyperconvex metric space
if for any collection of points xα of M and any collection rα of non-negative
real numbers with d(xα, xβ) ≤ rα + rβ , we have∩

α

B(xα, rα) ̸= ∅.
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The simplest examples of hyperconvex spaces are finite dimensional real
Banach space and l∞ endowed with the maximum norm. It is well known
that for any hyperconvex metric space M there exists an index set I and a
natural isometric embedding from M into l∞(I). Also there exists a nonex-
pansive retraction r : l∞(I) → M . Henceforth let r : l∞(I) → M denotes an
arbitrary nonexpansive retraction and (note M is isometrically embedded in
l∞(I)) conv(a, b) = {(1 − t)a + tb : 0 ≤ t ≤ 1}. For each a, b ∈ M we have
r(conv(a, b))

⊆ r
(∩

{B ⊆ l∞(I) : B is a closed ball in l∞(I) such that conv(a, b) ⊆ B}
)

⊆
∩

{B ⊆ M : B is a closed ball in M such that {a, b} ⊆ B}
= co(a, b).

Thus,
r(conv(a, b)) ⊆ co(a, b).

Definition 1.2. A subset E of a metric space M is said to be proximinal if
the intersection E ∩ B(x, d(x,E)) is nonempty for each x ∈ M .

Lemma 1.3 ([5], page 398). If E is admissible subset of a hyperconvex metric
space M , then E is proximinal in M .

The following best approximation theorem, which will be used in the next
section, is due to Kirk et al. [6].

Theorem 1.4. Let X be a compact admissible subset of a hyperconvex metric
space (M,d). Suppose that F : X ( M is continuous with admissible values.
Then, there exists a point x0 ∈ X, such that

d(x0, F (x0)) = inf
x∈X

d(x, F (x0)).

Moreover, if x0 ̸∈ F (x0), x0 must be a boundary point of X.

2. Fixed point theory

In his thesis [4], Halpern initiated the study of fixed point theorems for
continuous single valued outward mappings in the setting of topological vector
spaces. Now, we introduce inward set valued maps in hyperconvex metric
spaces.

Definition 2.1. Let C be a subset of hyperconvex metric space (M,d). For
each x ∈ M , let the inward set of C at x, IC(x), be defined by

IC(x) = ∪y∈Cco{x, y} ∪ {z ∈ M : ∃ r : l∞(I) → M :

(r(conv{x, z})\{x}) ∩ C ̸= ∅}.
Note C ⊆ IC(x) for each x ∈ M . A set valued map F : C ( M is said to be
inward if, for each x ∈ C,

F (x) ∩ IC(x) ̸= ∅.
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Remark 2.2. For the topological vector space X, the inward set of C at x is
defined by

IC(x) = {y ∈ X : x + λ(y − x) ∈ C, for some λ > 0}

=
∪

y∈C

conv{x, y} ∪ {z ∈ X : (conv{x, z})\{x}) ∩ C ̸= ∅}.

The following is a new best approximation theorem in hyperconvex metric
spaces.

Theorem 2.3. Let X be a nonempty, compact admissible subset of hyperconvex
metric space (M,d). Suppose that F : X ( M is continuous set valued map
with admissible values. Then either

(i) there exists an x0 ∈ X such that x0 ∈ F (x0); or
(ii) there exists an x0 ∈ X such that x0 ∈ ∂X and

0 < d(x0, F (x0)) ≤ d(y, F (x0)), ∀ y ∈ IX(x0).

Proof. By Theorem 1.4, there is an x0 ∈ X such that

(2.1) d(x0, F (x0)) = inf
x∈X

d(x, F (x0)).

If d(x0, F (x0)) = 0, then x0 is a fixed point of F , suppose d(x0, F (x0)) > 0.
We now show that

d(x0, F (x0)) ≤ d(y, F (x0)), ∀ y ∈ IX(x0).

On the contrary, suppose there exists an z ∈ IX(x0)\X such that d(z, F (x0)) <
d(x0, F (x0)). Then, there exists an x ∈ X such that x ∈ r(conv{x0, z})\{x0}
where r : l∞(I) → M is a nonexpansive retraction. Since r(w) = w for each
w ∈ M (note M is isometrically embedded in l∞(I)), then r(x0) = x0 ̸= x.
Hence x = r((1 − t)x0 + tz) for some 0 < t ≤ 1. Since F (x0) is admissible,
then by Lemma 1.3, (pick x = x0 and x = z in Definition 1.2), there exist
y1, y2 ∈ F (x0) such that

d(x0, F (x0)) = d(x0, y1) and d(z, F (x0)) = d(z, y2).

We have
d(x0, F (x0)) = (1 − t)d(x0, F (x0)) + td(x0, F (x0))

> (1 − t)d(x0, F (x0)) + td(z, F (x0))

= (1 − t)d(x0, y1) + td(z, y2).

Since M is isometrically embeded in l∞ and r is nonexpansive, then

(1 − t)d(x0, y1) + td(z, y2) = (1 − t)∥x0 − y1∥∞ + t∥z − y2∥∞
= ∥((1 − t)x0 + tz) − ((1 − t)y1 + ty2)∥∞
≥ d(r((1 − t)x0 + tz), r((1 − t)y1 + ty2))

= d(x, r((1 − t)y1 + ty2)).
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Since F (x0) is admissible we have

r((1 − t)y1 + ty2)) ∈ co(y1, y2) ⊆ F (x0),

and so
d(x, r((1 − t)y1 + ty2)) ≥ d(x, F (x0)).

Therefore
d(x, F (x0)) < d(x0, F (x0)),

which contradicts (2.1). ¤

As a corollary, we get the following fixed point theorem for inward set valued
maps.

Corollary 2.4. Let X be a nonempty, compact admissible subset of a hyper-
convex metric space (M,d). Suppose that F : X ( M is continuous set valued
map with admissible values. In addition, suppose

F (x) ∩ IX(x) ̸= ∅, ∀x ∈ X.

Then F has a fixed point.

Proof. On the contrary, we suppose that F is fixed point free. From Theorem
2.3, there exists an x0 ∈ X such that

0 < d(x0, F (x0)) ≤ d(y, F (x0)), ∀ y ∈ IX(x0).

Take y0 ∈ F (x0) ∩ IX(x0), and note

0 < d(x0, F (x0)) ≤ d(y0, F (x0)) = 0,

and is a contradiction. ¤

The following Lemma is a particular case of Lemma 2.1, in [2], and we give
its proof for completeness.

Lemma 2.5. Let X be a nonempty admissible subset of a hyperconvex metric
space M and F : X ( M . If ∅ ̸= Q ⊆ X, then either

(i) M = co(F (M ∩ X) ∪ Q) = co(F (X) ∪ Q) or;
(ii) there exists an admissible set K = K(F,Q) with Q ⊆ K ⊆ M and

K = co(F (K ∩ X) ∪ Q).

Proof. Suppose M ̸= co(F (X) ∪ Q). Let

F = {A ⊆ M : A is admissible and co(F (X ∩ A) ∪ Q) ⊆ A}.

Let A0 = co(F (X) ∪ Q). Then A0 is admissible and

co(F (X ∩ A0) ∪ Q) ⊆ co(F (X) ∪ Q) = A0,

so A0 ∈ F , F ̸= ∅. Define a partial order by inverse inclusion, that is, for A,
B ∈ F , A ≤ B ⇔ B ⊆ A. Let C be any chain in F . Put N =

∩
A∈C A. Since
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each A ∈ C is admissible and contains Q, we infer that N is admissible and
contains Q, for all A ∈ C, and it follows from

F (N ∩ X) ∪ Q ⊆ F (A ∩ X) ∪ Q

that co(F (N ∩ X) ∪ Q) ⊆ co(F (A ∩ X) ∪ Q) ⊆ A and so

co(F (N ∩ X) ∪ Q) ⊆
∩

A∈C
A = N.

Thus N ∈ F and N is an upper bound of C. By Zorn’s lemma, F has a
maximal element, say K. We claim that co(F (K ∩ X) ∪ Q) = K. In fact, put
K0 = co(F (K ∩ X) ∪ Q). It is obvious that K0 is admissible and contains Q.
Furthermore, since

co(F (K0 ∩ X) ∪ Q) ⊆ co(F (K ∩ X) ∪ Q) = K0,

we have K0 ∈ F and K0 ≥ K. By the maximality of K, we conclude that
K = K0, that is

co(F (K ∩ X) ∪ Q) = K.

¤

The proof of the following theorem, follows along the lines of Theorem 2.1
in [1].

Theorem 2.6. Let X be a nonempty admissible subset of a hyperconvex metric
space M . Assume F : X ( M , is a continuous set valued map with admissible
values and

(2.2) F (x) ∩ IX(x) ̸= ∅, ∀ x ∈ X.

Then F has a fixed point provided the following condition holds:

for any x0 ∈ X, and A ⊆ M with A = co(F (A ∩ X) ∪ {x0})
we have that A is compact.

(2.3)

Proof. Putting Q = {x0} in Lemma 2.5, we obtain that either M = co(F (M ∩
X) ∪ {x0}) = co(F (X) ∪ {x0}) or there exists an admissible set K ⊆ M with
K = co(F (K ∩ X) ∪ {x0}). In the first case, (2.3) implies that M is compact.
Since X is a closed subset of M , then X is compact and the conclusion follows
from Corollary 2.4. In the second case, since (2.3) holds, then K = K is
compact. We now concentrate our study on F |K∩X . Notice F |K∩X : K ∩X (
M is continuous with K ∩ X compact (note X is closed since it is admissible)
and admissible. Now, we claim

(2.4) F (x) ∩ IK∩X(x) ̸= ∅, ∀ x ∈ K ∩ X.

If our claim is true, then Corollary 2.4, implies F |K∩X has a fixed point, so we
are finished. It remains to prove the claim. Let x ∈ K ∩ X, we have

F (x) ⊆ F (K ∩ X) ⊆ K.
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From (2.2), there is a y ∈ F (x)∩IX(x). If y ∈ X (note then y ∈ K by above so
y ∈ K ∩ X) , then y ∈ F (x) ∩ IK∩X(x) ̸= ∅. If y ̸∈ X there is a nonexpansive
retraction r : l∞(I) → M an z ∈ X with z ∈ r(conv{x, y})\{x}. Now, since K
is admissible we have

z ∈ r(conv{x, y}) ⊆ co(x, y) ⊆ K.

Consequently,
z ∈ r(conv{x, y})\{x} ∩ (K ∩ X),

so y ∈ IK∩X(x) and (2.4) holds. ¤

Theorem 2.7. Let X be a nonempty admissible subset of a hyperconvex metric
space M . Assume F : X ( M , is a continuous set valued map with admissible
values and

F (x) ∩ IX(x) ̸= ∅, ∀ x ∈ X.

Then, F has a fixed point provided that the following condition holds:

whenever x0 ∈ X, A ⊆ M , F (A ∩ X) ⊆ A and

A \ co(F (A ∩ X)) ⊆ {x0} we have that A is compact.
(2.5)

Proof. Choose x0 ∈ X and let A =
∪

i≥0 F (i)(x0) where F (0)(x0) = {x0} and
F (i+1)(x0) = F (F (i)(x0) ∩ X). Then F (A ∩ X) ⊆ A and A \ co(F (A ∩ X)) ⊆
{x0}, so A is compact. Define G : A ∩ X ( A ∩ X by G(x) = F (x) ∩ A ∩ X.
Since F is continuous and A is compact, it is easy to see that G(x) ̸= ∅, ∀ x ∈ A.
Put

A = {Y : Y is a nonempty closed subset of A ∩ X and G(Y ) ⊆ Y }.

Since A ∩ X ∈ A, A ̸= ∅. Define a partial order ≤ on A by A ≤ B ⇔ B ⊆ A.
Let C be any chain in A and put N =

∩
L∈C L. Now N is an upper bound

of C and so, by Zorn’s Lemma, A has a maximal element, say Q. Since F is
continuous, so is G, and this with the compactness of A guarantees that G(Q) is
compact. Putting Y = G(Q) and noting that G(Y ) = G(G(Q)) ⊆ G(Q) = Y ,
the maximality of Q gives us that Q = Y . Thus

Q = G(Q) = F (Q) ∩ A ∩ X ⊆ F (Q).

If M = co(F (M ∩X)∪Q) = co(F (X)∪Q) then M is compact by (2.5). Hence
X is compact and conclusion follows from Corollary 2.4. If M ̸= co(F (X)∪Q),
let K = K(F,Q) be the admissible subset of M described in Lemma 2.5, so
K = co(F (K ∩ X) ∪ Q). Since Q ⊆ F (Q) = F (Q ∩ X) ⊆ F (K ∩ X) (note,
Q ⊆ X), we have K = co(F (K ∩ X)) and so we have shown that there exists
an admissible subset K ⊆ M such that K\co(F (K ∩ X)) = ∅ ⊆ {x0}. Now
(2.5) implies that K = K is compact subset of M . Now, the same reasoning
as in Theorem 2.6 gives the conclusion. ¤
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