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πGα-LOCALLY CLOSED SETS AND πGα-LOCALLY
CONTINUOUS FUNCTIONS

I. Arockia Rani, K. Balachandran, and C. Janaki

Abstract. In this paper we introduce πGα–LC sets, πGα–LC∗ sets
and πGα–LC∗∗ sets and different notions of generalizations of continu-
ous functions in topological space and discuss some of their properties.

Further we prove pasting lemma for πGα–LC∗∗ continuous functions and
πGα–LC∗∗ irresolute functions.

1. Introduction

Norman Levine [10] introduced the concept of generalized closed sets in
1970. The notion of a locally closed set in a topological space was implicitly
introduced by Kuratowski and Sierpienski [9]. According to Bourbaki [3] a
subset of a topological space X is locally closed in X if it is the intersection of
an open set and a closed set in X. In 1989, Ganster and Reilly [7] continued the
study of locally closed set and also introduced the concept of LC-continuous
functions to find a decomposition of continuous functions. Balachandran et
al. [2] introduced the concept of generalized locally closed sets and obtained
seven more different notions of generalized continuity. Arockia Rani et al. [1]
introduced regular generalized locally closed sets and obtained six more new
classes of generalized continuity using the concept of regular generalized closed
sets [12].

The purpose of this paper is to introduce three new classes of sets called
πGα–LC set, πGα–LC∗ sets, πGα–LC∗∗ sets, which contains the class of glc-
sets and α–LC sets by using the notion of πgα-open and πgα-closed sets. Also
we introduce some different classes of continuity and irresoluteness and study
some of their properties.

2. Preliminaries

Throughout this paper (X, τ), (Y, σ) and (Z, η) denote topological spaces on
which no separation axioms are assumed unless explicitly stated. For a subset
A of a topological space X, cl(A), int(A) denotes the closure of A and interior
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of A repectively. P (X) denotes the power set of X. A subset A of X is regular
open if A = int cl(A) and regular closed if A = cl int(A). Finite union of regular
open sets is called π-open. Recall the following definitions which will be used
in sequel.

Definition 2.1. A subset A of a space (X, τ) is called
(a) g-closed [10] if cl(A) ⊂ G whenever A ⊂ G and G is open.
(b) πgα-closed if α cl(A) ⊂ U whenever A ⊂ U and U is π-open.
(c) α-closed [11] if cl(int(cl(A))) ⊂ A.

Definition 2.2. A subset A of (X, τ) is called
(a) locally closed set [6] if A = G ∩ F where G is open and F is closed.
(b) generalized locally closed set [2] (briefly glc-set) if A = G ∩ F where G

is g-open and F is g-closed.
(c) glc∗-set [2] if there exist a g-open set G and a closed set F such that

A = G ∩ F .
(d) glc∗∗-set [2] if there exist an open set G and a g-closed set F such that

A = G ∩ F .
(e) α-locally closed set [8] (briefly αlc-set ) if A = G∩F where G is α-open

and F is α-closed.
(f) α-lc∗ set [8] if there exist a α-open set G and a closed set F such that

A = G ∩ F .
(g) α-lc∗∗ set [8] if there exist an open set G and a α-closed set F such

that A = G ∩ F .

The collection of all locally closed sets (resp. glc sets, α-lc sets, glc∗ sets,
α-lc∗ sets, glc∗∗ sets, α-lc∗∗ sets) of (X, τ) will be denoted by LC(X, τ) (resp.
GLC(X, τ), α-LC(X, τ), GLC∗(X, τ), GLC∗∗(X, τ), α-LC∗∗(X, τ)).

Definition 2.3. A function f : (X, τ) → (Y, σ) is called
(a) LC-continuous [6] if f−1(V ) ∈ LC(X, τ) for each open set V of (Y, σ).
(b) LC-irresolute [6] if f−1(V ) ∈ LC(X, τ) for each V ∈ LC(Y, σ)
(c) Sub-LC-continuous [6] if there is a sub-base B for (Y, σ) such that

f−1(V ) ∈ LC(X, τ) for each V ∈ B.

Definition 2.4. A space (X, τ) is called
(a) a submaximal space [4] if every dense subset of X is open.
(b) a door space [5] if every subset of X is either open or closed in X.
(c) a πgα-T 1

2
space if every πgα-closed set is α-closed.

3. πGα-Locally Closed Sets

In this section we define πgα-locally closed sets a weaker form of locally
closed sets and compare it with the existing weaker forms of sets.

Definition 3.1. A subset S of (X, τ) is called
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(a) πgα-locally closed (briefly πgα-lc set) if S = A∩B where A is πgα-open
in X and B is πgα-closed in X.

(b) πgα-lc∗ set if there exist a πgα-open set A and a closed set B such
that S = A ∩ B.

(c) πgα-lc∗∗ set if there exist a open set A and a πgα-closed set B such
that S = A ∩ B.

The collection of all πgα-lc sets ( resp. πgα-lc∗ sets, πgα-lc∗∗) of (X, τ) will
be denoted by πGα-LC(X, τ), (resp. πGα-LC∗(X, τ), πGα-LC∗∗(X, τ)).

Remark 3.2. It is well known fact every closed (resp. open) set is locally closed.
Every πgα-open set (resp. πgα-closed set) is πgα-LC.

Remark 3.3. Every locally closed set is πgα-locally closed but not conversely.

Example 3.4. Let X = {a, b, c, d} , τ = {φ,X, {a}}. Then

LC(X) = {φ,X, {a} , {b, c, d}} , πGα–LC(X) = P (X).

This show that πgα-locally closed set need not to be locally closed.

Remark 3.5. From the definition above and definition 3.1 we have the following
implications.

Closed set Locally Closed
glc

glc∗

glc∗∗
πgα-lc∗
πgα-lc∗∗ πgα-lc

α-lc α-lc
α-lc∗

πgα-lc∗
πgα-lc∗∗ πgα-lc

In the remark above the relationship cannot be reversible as the following
example illustrates.

Example 3.6. (a) X = {a, b, c, d}, τ = {φ,X, {b}, {c, d}, {b, c, d}}
(i) {a, b, d} ∈ πGα–LC(X, τ) but {a, b, d} /∈ πGα–LC∗(X, τ).
(ii) {a, b, c} ∈ πGα–LC∗∗(X, τ) but {a, b, c} /∈ πGα–LC∗(X, τ).

(b) X = {a, b, c, d}, τ = {φ, X, {a}, {c, d}, {d}, {a, d}, {a, c, d}}
(i) {a, b, d} ∈ πGα–LC∗(X, τ) but {a, b, d} /∈ g–LC∗(X, τ).
(ii) {a, b, d} ∈ g–LC(X, τ) but {a, b, d} /∈ g–LC∗(X, τ).

(c) X = {a, b, c}, τ = {φ, X, {a}, {b, c}}
(i) {a, b} ∈ πGα–LC(X, τ) but {a, b} /∈ α–LC(X, τ).
(ii) {c} ∈ πgα–LC∗(X, τ) but {c} /∈ α–LC∗(X, τ).
(iii) {c} ∈ πGα–LC∗∗(X, τ) but {c} /∈ α–LC∗∗(X, τ).

Remark 3.7. If A ∈ LC(X, τ) then A ∈ πGα–LC∗(X, τ) and πGα–LC∗∗(X, τ).
The converse is not true as seen in the following example. Let X = {a, b, c},
τ = {φ,X, {a, b}} then LC(X, τ) = {φ,X, {a, b}, {c}}, {a} /∈ LC(X, τ) but
{a} ∈ πGα–LC∗(X, τ) and πGα–LC∗∗(X, τ)

Definition 3.8. A space is a πgα-space if every πgα-open set is open in X.
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Proposition 3.9. Let (X, τ) be a πgα-space. Then
(i) πGα–LC(X, τ) = LC(X, τ)
(ii) πGα–LC(X, τ) ⊂ GLC(X, τ)
(iii) πGα–LC(X, τ) ⊂ αLC(X, τ)

Proof. Obvious. ¤
Proposition 3.10. If πGαO(X, τ) = GO(X, τ) then

πGα–LC(X, τ) = GLC(X, τ).

Proof. Follows from definition ¤
Proposition 3.11. If X is a πgα–T 1

2
space then

πGα–LC(X, τ) = α–LC(X, τ).

Proof. Follows from definition. ¤
The converse of the above proposition need not hold.

Example 3.12. X={a, b, c, d}, τ = {φ,X, {b}, {a, b}, {b, c}, {a, b, c}}. Then

πGα–LC(X, τ) = α–LC(X, τ) = GLC(X, τ) = P (X).

But
GO(X) = {φ,X, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c}}

̸= πGαO(X, τ),

αO(X) = {φ,X, {b}, {a, b}, {b, c}, {b, d}, {a, b, c}, {a, b, d}, {b, c, d}}
̸= πGαO(X, τ).

Proposition 3.13. If X is a πgα-space, then

πGα–LC(X, τ) = πGα–LC∗(X, τ) = πGα–LC∗∗(X, τ).

Proof. Straight forward. ¤
The hypothesis in proposition 3.13 can be weakened as follows.

Proposition 3.14. If πGαO(X, τ) ⊂ LC(X, τ) and suppose that collection
of all πgα-closed sets (πgα-open) sets are closed under finite intersection then
πGα–LC(X) = πGα–LC∗(X) = πGα–LC∗∗(X)

Proof. Let A ∈ πGα–LC(X). Then A = P ∩Q where P is πgα-open and Q is
πgα-closed. Since πGαO(X, τ) ⊂ LC(X, τ) implies πGαC(X, τ) ⊂ LC(X, τ),
we have Q is locally closed. Let Q = M ∩N where M is open and N is closed.
Hence A = (P ∩ M) ∩ N where (P ∩ M) is πgα-open and N is closed. Hence
A ∈ πGα–LC∗(X). For any space X, πGα − LC∗(X) ⊂ πGα–LC(X). Thus
πGα–LC(X) = πGα–LC∗(X).Let B ∈ πGα–LC(X). Then B = P ∩ Q where
P is πgα-open and Q is πgα-closed. Since πGαO(X, τ) ⊂ LC(X, τ) implies P
is locally closed, we have P = M ∩N where M is open and N is closed. Hence
A = M ∩ (N ∩ Q) where M is open and N ∩ Q is πgα-closed. For any space
X, πGα–LC∗∗(X) ⊂ πGα–LC(X). Thus πGα–LC(X) = πGα–LC∗∗(X). ¤
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Now, we obtain a characterization for πGα–LC∗(X) sets as follows.

Theorem 3.15. For a subset S of (X, τ) the following are equivalent.
(i) S ∈ πGα–LC∗(X, τ)
(ii) S = P ∩ cl(S) for some πgα-open set P
(iii) cl(S) − S is πgα-closed
(iv) S ∪ (X − cl(S)) is πgα-open.

Proof. 1⇒ 2: Let S ∈ πGα–LC∗(X, τ). Then there exist a πgα-open set P
and a closed set F in (X, τ) such that S = P ∩F . Since S ⊂ P and S ⊂ cl(S),
we have S ⊂ P ∩ cl(S). Conversely, since cl(S) ⊂ F , P ∩ cl(S) ⊂ P ∩ F = S.
Hence S = P ∩ cl(S).

2⇒1: Since P is πgα -open and cl(S) is closed, S = p∩cl(S) ∈ πGα–LC∗(X, τ).
3⇒ 4: Let F = cl(S) − S. Then F is πgα-closed, by assumption. X − F =

X ∩ (cl(S) − S)c = S ∪ (X − cl(S)). Since X − F is πgα-open, we have that
S ∪ (X − cl(S)) is πgα-open.

4⇒ 3: Let U = S∪ (X −cl(S)). Then U is πgα-open. This implies X −U =
X − (S ∪ (X − cl(S))) = (X − S) ∩ cl(S) = cl(S) − S is πgα-closed.

2⇒4: Let S = P ∩ cl(S) for some πgα-open set P . S ∪ (X − cl(S)) =
P ∩ (cl(S) ∪ X − cl(S)) = P ∩ X = P which is πgα-open.

4⇒ 2: Let U = S ∪ (X − cl(S)). Then U is πgα-open. Now U ∩ cl(S) =
(S ∪ (X − cl(S))) ∩ cl(S) = (S ∩ cl(S)) ∪ (X − cl(S) ∩ cl(S)) = S ∪ φ = S for
some πgα-open set U . ¤
Remark 3.16. It is not true that S ∈ πGα–LC∗(X, τ) iff S ⊂ int(S ∪ (X −
cl(S))). Let S = {b, c} be a subset of the topological space (X, τ) given in
example 3.6 (a). Then S /∈ int(S ∪ (X − cl(S)), but S ∈ πGα–LC∗(X, τ).

Definition 3.17. A topological space (X, τ) is called πgα-submaximal, if every
dense subset in it is πgα-open.

Definition 3.18. Let (X, τ) be a topological space.If X is a submaximal, then
it is πgα-submaximal.

Proof. Follows from definition. ¤
Converse of the above is not true as seen in the following example.

Example 3.19. Let X = {a, b, c}, τ = {φ,X, {a}, {b, c}}. Let A = {a, b}. A is
dense in X, such that A is πgα-open but not open.

Theorem 3.20. A topological space (X, τ) is πgα-submaximal if and only if
πgα–LC∗(X, τ) = P (X).

Proof. Necessity: Let S ∈ P (X). Let U = S ∪ (X − cl(S)). Then cl(U) = X.
U is dense in X and X is πgα-submaximal implies U is πgα-open. By theorem
3.15, S ∈ πGα–LC∗(X, τ). Sufficiency: Let S be a dense subset of (X, τ).
Then S ∪ (X − cl(S)) = S ∪ φ = S. Now S ∈ P (X) ⇒ S ∈ πGα–LC∗∗(X, τ).
By theorem 3.15 S ∪ (X − cl(S)) = S is πgα-open. Hence (X, τ) is πgα-
submaximal. ¤
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Theorem 3.21. For a subset S of (X, τ) if S ∈ πGαLC∗∗(X, τ) then there
exist a open set P such that S = P ∩ cl(S) where cl(S) is the πgα-closure of S.

Proof. Let S ∈ πGα–LC∗∗(X, τ). Then there exist an open set P and πgα-
closed set F of (X, τ) such that S = P ∩ F . Since S ⊂ P and S ⊂ cl(S), we
have S ⊂ P ∩ cl(S). Since cl(S) ⊂ F , we have P ∩ cl(S) ⊂ P ∩ F ⊂ S. Thus
S = P ∩ cl(S). ¤

4. Properties of πgα–LC sets

Theorem 4.1. Let A and B be any two subsets of (X, τ). Suppose that the
collection of πgα-closed sets of (X, τ) is closed under finite intersections, then
the following are true.

(a) If A ∈ πGα–LC(X, τ) and B is πgα-open or πgα-closed then A∩B ∈
πGα–LC(X, τ).

(b) If A ∈ πGα–LC∗(X, τ), B ∈ πGα–LC∗(X, τ) then

A ∩ B ∈ πGα–LC∗(X, τ).

Proof. (a) A ∈ πGα–LC(X, τ) implies A∩B = (G∩F )∩B for some πgα-open
set G and πgα-closed set F . If B is πgα-open then A ∩ B = (G ∩ B) ∩ F ∈
πGα–LC(X, τ). If B is πgα-closed, then A∩B = G∩(F∩B) ∈ πGα–LC(X, τ),
since F ∩ B is πgα-closed.

(b) A,B ∈ πGα–LC∗(X, τ) then by theorem 3.15, there exist πgα-open sets
P and Q such that A = P ∩ cl(A) and B = Q∩ cl(B). P ∩Q is also πgα-open.
Then A ∩ B = (P ∩ Q) ∩ (cl(A) ∩ cl(B)) ∈ πGα–LC∗(X, τ). ¤

Proposition 4.2. Let A and B be any two subsets of (X, τ). Suppose that the
collection of all πgα-closed sets of (X, τ) is closed under finite intersection. If
A ∈ πGα–LC∗∗(X, τ) and B is closed or open, then A∩B ∈ πGα–LC∗∗(X, τ).

Proof. If A ∈ πGα–LC∗∗(X, τ), then there exist an open set G and a πgα-
closed set F of (X, τ) such that A ∩ B = (G ∩ F ) ∩ B. If B is open, then
A ∩ B = (G ∩ B) ∩ F ∈ πgα–LC∗∗(X, τ). If B is closed, then A ∩ B =
G ∩ (F ∩ B) ∈ πgα–LC∗∗(X, τ). ¤

Proposition 4.3. Let A and Z be any two subsets of (X, τ) and let A ⊂
Z. Suppose that the collection of all πgα -open sets of (X, τ) is closed under
finite intersection. If Z is πgα -open in (X, τ) and regular closed and if A ∈
πGα–LC∗(Z, τ/Z) then A ∈ πGα–LC∗(X, τ).

Proof. If A ∈ πGα–LC∗(Z, τ/Z), there is a πgα -open set G in (Z, τ/Z) such
that A = G ∩ clz(A) where clZ(A) = Z ∩ cl(A). Since G and Z are πgα
-open, G ∩ Z is also πgα -open. This implies that A = (G ∩ Z) ∩ cl(A) ∈
πGα–LC∗(X, τ). ¤

Remark 4.4. The following examples shows that one of the assumptions in the
above theorem (i.e) Z is πgα-open in (X, τ) cannot be removed.
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Example 4.5. Let X = {a, b, c, d}, τ = {φ,X, {b}, {c, d}, {b, c, d}}. Let Z =
A = {a, b, d}. Then Z is not πgα-open in X. τ/Z = {φ, Z, {b}, {d}, {b, d}}.
A ∈ πgα–LC∗(Z, τ/Z) but A /∈ πgα–LC∗(X, τ).

Lemma 4.6. Let Z be regular open and πgα-closed in (X, τ) and F ⊂ Z. If
F is πgα-closed in (Z, τ/Z) then F is πgα-closed in (X, τ).

Proof. Straight forward. ¤

Theorem 4.7. Suppose that the collection of all πgα-closed sets of (X, τ) is
closed under finite intersection. If Z is πgα-closed, regular open in (X, τ) and
A ∈ πGα–LC∗(Z, τ/Z) then A ∈ πGα–LC(X, τ).

Proof. Let A ∈ πGα–LC∗(Z, τ/Z). Then A = G ∩ F for some πgα-open set
G in (Z, τ/Z), and some closed set F in (Z, τ/Z). F is closed in Z, Z is
πgα-closed and regular open in X implies F is πgα-closed in (X, τ). Hence
A = G ∩ F ∈ πGα–LC(X, τ). ¤

Proposition 4.8. If Z is closed and open (X, τ) and A ∈ πGα–LC(Z, τ/Z)
then A ∈ πGα–LC(X, τ).

Proof. Let A ∈ πGα–LC(Z, τ/Z). Then A = G ∩ F where G is πgα-open in
Z and F is πgα-closed in Z. Since Z is closed and open in (X, τ) by lemma
4.6, G and F are πgα-open and πgα-closed respectively in (X, τ). Therefore
A ∈ πGα–LC(X, τ). ¤

Theorem 4.9. If Z is πgα-closed, regular open in (X, τ) and

A ∈ πGα–LC∗∗(Z, τ/Z)

then A ∈ πGα–LC∗∗(X, τ).

Proof. Let A ∈ πGα–LC∗∗(Z, τ/Z). Then A = G ∩ F where G is open in
Z and F is πgα-closed in Z. Since Z is πgα-closed in (X, τ) and regular
open G and F are open sets and πgα-closed sets respectively in (X, τ). Then
A ∈ πGα–LC∗∗(Z, τ/Z). ¤

Definition 4.10. Let A, B ⊂ X. Then A and B are said to be separated if
A ∩ cl(B) = φ and B ∩ cl(A) = φ. [1]

Proposition 4.11. Suppose the collection of all πgα-open sets of (X, τ) are
closed under finite unions. Let A, B ∈ πGα–LC∗(X, τ). If A and B are sepa-
rated in (X, τ) then A ∪ B ∈ πGα–LC∗(X, τ).

Proof. Since A, B ∈ πGα–LC∗(X, τ) by theorem 3.14 there exist πgα-open
sets P and Q of (X, τ) such that A = P ∩ cl(A) and B = Q ∩ cl(B). Put
U = P ∩ (X − cl(B)) and V = Q ∩ (X − cl(A)). Then U and V are πgα-open
subsets of (X, τ). Then A = U ∩ cl(A) and B = V ∩ cl(B) and U ∩ cl(B) = φ,
V ∩ cl(A) = φ, hold. Consequently A ∪ B = (U ∪ V ) ∩ (cl(A ∪ B)), showing
that A ∪ B ∈ πGα–LC∗(X, τ). ¤
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Remark 4.12. The following example shows that one of assumption of propo-
sition 4.11 (i.e. A and B are separated) cannot be removed.

In example 3.6 (a), {a} ∈ πGα–LC∗(X, τ), {b, d} ∈ πGα–LC∗(X, τ). How-
ever {a} and {b, d} are not separated and {a, b, d} /∈ πGα–LC∗(X, τ).

Theorem 4.13. Let {Zi : i ∈ ∧} be a finite πgα-closed cover of (X, τ) and let
A be a subset of (X, τ). If A ∩ Zi ∈ πGα–LC∗∗(Zi, τ/Zi) for each i ∈ ∧, then
A ∈ πGα–LC∗∗(X, τ).

Proof. For each i ∈ ∧, there exist an open set Ui ∈ τ/Zi and πgα-closed set
Fi of (Zi, τ/Zi), such that A ∩ Zi = (Ui ∩ Fi) ∩ Zi = Ui ∩ (Fi ∩ Zi). Then
A = ∪{A ∩ Zi : i ∈ ∧} = ∪{Ui : i ∈ ∧} ∩ [∪{Zi ∩ Fi : i ∈ ∧}] and hence
A ∈ πGα–LC∗∗(X, τ). ¤

Theorem 4.14. Let (X, τ) and (Y, σ) be any two topological spaces. Then
(i) If A ∈ πGα–LC(X, τ) and B ∈ πGα–LC(Y, σ), then

A × B ∈ πGα–LC(X × Y, τ × σ).

(ii) If A ∈ πGα–LC∗(X, τ) and B ∈ πGα–LC∗(Y, σ), then A × B ∈
πGα–LC∗(X × Y, τ × σ).

(iii) If A ∈ πGα–LC∗∗(X, τ) and B ∈ πGα–LC∗∗(Y, σ), then A × B ∈
πGα–LC∗∗(X × Y, τ × σ).

Proof. Let A ∈ πGα–LC(X, τ) and B ∈ πGα–LC(Y, σ). Then there exist
πgα-open sets V and V 1 of (X, τ) and πgα-closed sets W and W 1 of (Y, σ)
respectively such that A = V ∩W and B = V 1∩W 1. Then A×B = (V ∩W )×
(V 1 ∩ W 1) = (V × V 1) ∩ (W × W 1) holds and hence A × B ∈ πGα–LC(X ×
Y, τ × σ).

Proofs of (ii) and (iii) are similar to (i). ¤

5. πGα–LC Continuity and πgα–LC Irresoluteness

In this section we use πGα–LC sets, πGα–LC∗ sets, πGα–LC∗∗ sets to
generalize πGα–LC continuous functions, πGα–LC irresolute functions.

Definition 5.1. a) A function f : (X, τ) → (Y, σ) is called πGα–LC con-
tinuous (resp. πGα–LC∗ continuous, πGα–LC∗∗ continuous) if f−1(V ) ∈
πGα–LC(X, τ) (resp. f−1(V ) ∈ πGα–LC∗(X, τ), f−1(V ) ∈ πGα–LC∗∗(X, τ))
for every V ∈ σ.
b) A function f : (X, τ) → (Y, σ) is called πGα–LC irresolute (resp. πGα–LC∗

irresolute, πGα–LC∗∗ irresolute) if f−1(V ) ∈ πGα–LC(X, τ) (resp. f−1(V ) ∈
πGα–LC∗(X, τ), f−1(V ) ∈ πGα–LC∗∗(X, τ)) for every V ∈ πGα–LC(Y, σ)
(resp. V ∈ πGα–LC∗(Y, σ), V ∈ πGα–LC∗∗(Y, σ))

Proposition 5.2. If f is πGα–LC irresolute then it is πGα–LC continuous.

Proof. Follows from definition 5.1. ¤
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Proposition 5.3. Let f : (X, τ) → (Y, σ) be a function.
(i) If f is LC-continuous, then f is πGα–LC∗ continuous and πGα–LC∗∗

continuous.
(ii) If f is πGα–LC∗ continuous then f is πGα–LC continuous.
(iii) If f is πGα–LC∗∗ continuous then f is πGα–LC continuous.
(iv) If f is πGα–LC∗ irresolute then f is πGα–LC∗ continuous.
(v) If f is πGα–LC∗∗ irresolute then f is πGα–LC∗∗ continuous.

Proof. Straight forward. ¤
Converse of the above need not be true in general as can be seen in the

following examples.

Example 5.4. (1) Let X = {a, b, c}, τ = {X,φ, {a, b}}, σ = {φ,X, {a}, {b}, {c},
{a, b}, {b, c}, {c, a}}. Let f : (X, τ) → (X,σ) be the identity mapping. f is
πGα–LC∗ continuous and πGα–LC∗∗ continuous but not LC-continuous.

(2) Let X = {a, b, c, d}, τ = {φ, X, {b}, {c, d}, {b, c, d}} and σ = {φ, Y, {c},
{a, b, d}}. Let f : (X, τ) → (X,σ) be the identity mapping. Then f is πGα–LC
continuous but not πGα–LC∗ continuous since {a, b, d} ∈ (Y, σ) but {a, b, d} /∈
πGα–LC∗(X, τ).

(3) Let X = {a, b, c, d}, τ = {φ,X, {b}, {c, d}, {b, c, d}}, σ = {φ,X, {a, c, d},
{b}} and f : (X, τ) → (X,σ) be the identity mapping. Then f is πGα–LC∗

continuous but not πGα–LC∗-irresolute since {a, b, d} ∈ πGα–LC∗(Y, σ) but
{a, b, d} /∈ πGα–LC∗(X, τ).

Proposition 5.5. Any map defined on a door space is πGα–LC irresolute.

Proof. Let (X, τ) be door space and (Y, σ) be any space. Define a map f :
(X, τ) → (Y, σ). Let A ∈ πGα–LC(Y, σ). Then f−1(A) is either open or
closed in (X, τ). In both cases f−1(A) ∈ πGα–LC(X, τ). Hence f is πGα–LC
irresolute. ¤
Theorem 5.6. A topological space (X, τ) is πgα-submaximal iff every function
having (X, τ) as it domain is πGα–LC∗ continuous.

Proof. Suppose that f : (X, τ) → (Y, σ) is a function. By Theorem 3.20, we
have that f−1(V ) ∈ P (X) = πGα–LC∗(X, τ) for each open set V of (Y, σ).
Therefore f is πGα–LC∗ continuous. Conversely, let every map having (X, τ) as
domain be πGα–LC∗ continuous. Let Y = {0, 1} be the Sierpinski space with
topology σ = {Y, φ, {0}}. Let V be a subset of (X, τ) and f : (X, τ) → (Y, σ)
be a function defined by f(x) = 0 for every x ∈ V and f(x) = 1 for every
x /∈ V . By assumption, f is πGα–LC∗ continuous and hence f−1{0}) = V ∈
πGα–LC∗(X, τ). Therefore we have P (X) = πGα–LC∗(X, τ) and by theorem
3.20, (X, τ) is πgα -submaximal. ¤
Proposition 5.7. If f : (X, τ) → (Y, σ) is πGα–LC∗∗ continuous and subset
B is open in (X, τ), then the restriction of f to B say f/B : (B, τ/B) → (Y, σ)
is πGα–LC∗∗ continuous.
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Proof. Let V be an open set of (Y, σ). Then f−1(V ) = G ∩ F for some open
set G and πgα-closed set F of (X, τ). Now G∩B ∈ τ/B and F is a πgα-closed
subset of (B, τ/B). But (f/B)−1(V ) = (G ∩ B) ∩ F . Hence (f/B)−1(V ) ∈
πGα–LC∗∗(B, τ/B). This implies that f/B is πGα–LC∗∗ continuous. ¤

We recall the definition of the combination of two functions: Let X = A∪B
and f : A → Y and h : B → Y be two functions. We say that f and h are
compatible if f/A∩B = h/A∩B. If f : A → Y and h : B → Y are compatible
then the function f∇h : X → Y defined as

(f∇h)(x) =

{
f(x) for every x ∈ A,
h(x) for every x ∈ B,

is called the combination of f and h.

Pasting lemma for πGα–LC∗∗continuous (resp. πGα–LC∗∗-irresolute)
functions.

Theorem 5.8. Let X = A ∪ B, where A and B are πgα-closed subsets of
(X, τ) and f : (A, τ/A) → (Y, σ) and h = (B, τ/B) → (Y, σ) be compatible
functions

(a) If f and h are πGα–LC∗∗ continuous, then f∇h : (X, τ) → (Y, σ) is
πGα–LC∗∗ continuous.

(b) If f and h are πGα–LC∗∗ irresolute, then f∇h : (X, τ) → (Y, σ) is
πGα − LC∗∗ irresolute.

Proof. a) Let V ∈ σ. Then (f∇h)−1(V ) ∩ A = f−1(V ) and (f∇h)−1(V ) ∩
B = h−1(V ). By assumption (f∇h)−1(V ) ∩ A ∈ πGα − LC∗∗(A, τ/A) and
(f∇h)−1(V ) ∩ B ∈ πGα − LC∗∗(B, τ/B). Therefore by Theorem 4.13,

(f∇h)−1(V ) ∈ πGα–LC∗∗(X, τ)

and hence f∇h is πGα–LC∗∗-continuous.
b) Proof is similar to (a) ¤

Next we have the theorem concerning the composition of functions.

Theorem 5.9. Let f : (X, τ) → (Y, σ) and g : (Y, σ) → (Z, η) be the functions.
Then

(a) g ◦ f is πGα–LC irresolute (resp.πGα–LC∗ irresolute, πGα–LC∗∗ ir-
resolute) if f and g are πGα–LC irresolute (resp. πGα–LC∗ irresolute,
πGα–LC∗∗ irresolute.)

(b) g◦f is πGα–LC continuous if f is πGα–LC irresolute and g is πGα–LC
continuous.

(c) g ◦ f is πGα–LC∗ continuous if f is πGα–LC∗ continuous and g is
continuous.

(d) g ◦ f is πGα–LC continuous if f is πGα–LC continuous and g is
continuous.
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(e) g ◦ f is πGα–LC∗ continuous if f is a πGα–LC∗ irresolute and g is
πGα–LC∗ continuous.

(f) g ◦ f is πGα–LC∗∗ continuous if f is πGα–LC∗∗ irresolute and g is
πGα–LC∗∗ continuous.

Proof. Follows from definition 5.1 and 5.2. ¤

6. Sub πGα–LC∗-continuity

Definition 6.1. A function f : (X, τ) → (Y, σ) is called sub-πGα–LC∗-
continuous if there exist a basis B for (Y, σ) such that f−1(U) ∈ πGα–LC∗(X, τ)
for each U ∈ B.

Proposition 6.2. Let f : (X, τ) → (Y, σ) be a function:
(a) f is sub-πGα–LC∗-continuous iff there is a sub-basis of C of (Y, σ)

such that f−1(U) ∈ πGα–LC∗(X, τ) for each U ∈ C.
(b) If f is sub-LC-continuous then f is sub-πGα–LC∗-continuous.

Proof. (a) By assumption, there exist a basis B for (Y, σ) such that f−1(U) ∈
πGα–LC∗(X, τ) for each U ∈ B. Since B is also a sub-basis for (Y, σ),
the proof is obvious. Conversely, for a sub-basis C, let Cδ = {A ⊂ Y :
A is an intersection of finitely many sets belonging to C}. Then Cδ is a ba-
sis for (Y, σ). For U ∈ Cδ, U = ∩{Fi : Fi ∈ Ci, i ∈ ∧} where ∧ is a finite set.
By assumption and Proposition 4.1 (b) we have f−1(U) = ∩{f−1(Fi) : i ∈
∧} ∈ πGα–LC∗∗(X, τ).

(b) obtained from (a) and Definition 2.3 (c). ¤

Converse of Proposition 6.2 is not true as can be seen in the the following
example.

Example 6.3. Let X = Y = {a, b, c} and τ = {X,φ, {a}, {a, c}} and σ be the
topology induced by a base B of Y . Let f : (X, τ) → (Y, σ) be the iden-
tity function. If B = {Y, {c}} then f is sub-πGα–LC∗-continuous but not sub
LC−continuous since f−1({c}) = {c} ∈ πGα–LC∗(X, τ) but f−1({c}) = {c} /∈
LC(X, τ).
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