DOI QR코드

DOI QR Code

Gravitropism in the Salt-Stressed Primary Root of Maize (Zea mays)

염분 스트레스에 노출된 옥수수(Zea mays) 뿌리의 굴중성 반응

  • Han, Du-Yeol (Department of Molecular Biology, BK21 Graduate Program for RNA Biology, Institute of Nanosensor and Biotechnology, Dankook University) ;
  • Lee, Young-Na (Department of Molecular Biology, BK21 Graduate Program for RNA Biology, Institute of Nanosensor and Biotechnology, Dankook University) ;
  • Kim, Yeo-Jae (Department of Molecular Biology, BK21 Graduate Program for RNA Biology, Institute of Nanosensor and Biotechnology, Dankook University) ;
  • Park, Woong-June (Department of Molecular Biology, BK21 Graduate Program for RNA Biology, Institute of Nanosensor and Biotechnology, Dankook University)
  • 한두열 (단국대학교 분자생물학과, BK21 RNA 전문인력 양성사업팀, 단국대학교 나노센서바이오텍연구소) ;
  • 이영나 (단국대학교 분자생물학과, BK21 RNA 전문인력 양성사업팀, 단국대학교 나노센서바이오텍연구소) ;
  • 김여재 (단국대학교 분자생물학과, BK21 RNA 전문인력 양성사업팀, 단국대학교 나노센서바이오텍연구소) ;
  • 박웅준 (단국대학교 분자생물학과, BK21 RNA 전문인력 양성사업팀, 단국대학교 나노센서바이오텍연구소)
  • Published : 2008.08.30

Abstract

We investigated gravitropic responses in the primary root of maize (Zea mays) seedlings which were exposed to salt stress. The maize roots salt-stressed with higher than 100 mM NaCl or KCl started to reveal enhanced gravitropic curvature after 2 hours form the gravi-stimulation. Such a promotion was not caused by sodium phosphate, but invoked by potassium phosphate, indicating the active component is $K^{+}$. Because NaCl increased gravitropic curvature, despite that $Na^{+}$ did not played any role, we evaluated the role for $Cl^{-}$ by comparing the effects of $MgCl_2$ and $MgSO_4$. The enhancement of the curvature only with $MgCl_2$ revealed that $Cl^{-}$ played a role in the gravi-response, indicating the involvement of anion channels. These results suggest that both of $K^{+}$ and $Cl^{-}$ play roles in the regulation of osmosis that is required for cell expansion in gravitropism as well as in nyctinasty and stomatal opening.

염분 스트레스에 노출된 옥수수(Zea mays) 유식물의 원뿌리는 길이생장이 억제되는데, 본 연구에서는 위와 같은 조건에서 뿌리의 굴중성 반응을 조사하였다. 고농도의 NaCl과 KCl에 의해 스트레스를 받은 옥수수 원뿌리는 수평 상태에서 중력 자극을 받기 시작한 지 2시간 이후부터 대조구에 비하여 현저한 굴중성 반응을 나타내었다. 이러한 굴중성 촉진 현상은 $Na^{+}$가 아니라 $K^{+}$에 의한 것이었으며, Cl-도 굴중성 반응 촉진에 기여하였다. 이로부터 이들 $K^{+}$$Cl^{-}$이온들이 세포 팽창에 필요한 삼투 조절자로 기능한다는 결론을 얻었다. 또한 염분 스트레스에 의하여 뿌리의 길이 생장이 억제되더라도 중력장 내에서의 위치 결정은 억제되지 않고 오히려 촉진된다는 점도 확인하였다.

Keywords

References

  1. Apse, M. P., G. S. Aharon, W. A. Snedden and E. Blumwald. 1999. Salt tolerance conferred by over expression of a vacuolar $Na^+/H^+$ antiport in Arabidopsis. Science 285, 1256-1258 https://doi.org/10.1126/science.285.5431.1256
  2. Becker, D., I. Dreyer, S. Hoth, J. D. Reid, H. Busch, M. Lehnen, K. Palme and R. Hedrich. 1996. Changes in voltage activation, $Cs^+$ sensitivity, and ion permeability in H5 mutants of the plant $K^+$ channel KAT1. Proc. Natl. Acad. Sci. U.S.A. 93, 8123-8128
  3. Bentrup, F. W., H. Pfrüner, and G. Wagner. 1973. Evidence for differential action of indoleacetic acid upon ion fluxes in single cells of Petroselinum sativum. Planta 110, 369-372 https://doi.org/10.1007/BF00387065
  4. Chinnusamy, V., A. Jagendorf and J. K. Zhu. 2005. Understanding and improveving salt tolerance in plants. Crop Sci. 45, 437-448 https://doi.org/10.2135/cropsci2005.0437
  5. Claussen, M., H. Luthen, M. Blatt and M. Bottger. 1997. Auxin-induced growth and its linkage to potassium channels. Planta 201, 227-234 https://doi.org/10.1007/BF01007708
  6. Diedhiou, C. J. and D. Golldack. 2006. Salt-dependent regulation of chloride channel transcripts in rice. Plant Sci. 170, 793-800 https://doi.org/10.1016/j.plantsci.2005.11.014
  7. Dunlap, J. R. and M. L. Binzel. 1996. NaCl reduces indole- 3-acetic acid levels in the roots of tomato plants independent of stress-induced abscisic acid. Plant Physiol. 112, 379-384 https://doi.org/10.1104/pp.112.1.379
  8. Greenway, H. and R. Munns. 1980. Mechanisms of salt tolerance in nonhalophytes. Ann. Rev. Plant Physiol. 31, 149-190 https://doi.org/10.1146/annurev.pp.31.060180.001053
  9. Hasegawa, P. M., R. A. Bressan, J. K. Zhu, and H. J. Bohnert. 2000. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51, 463-499 https://doi.org/10.1146/annurev.arplant.51.1.463
  10. Hedrich, R. and D. Becker. 1994. Green circuits - The potential of plant specific ion channels. Plant Mol. Biol. 26, 1637-1650 https://doi.org/10.1007/BF00016494
  11. Hernandez, J. A., M. A. Ferrer, A. Jimenez, A. R. Barcelo, and F. Sevilla. 2001. Antioxidant systems and $O2^-/H_2O_2$ production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol. 127, 817-831 https://doi.org/10.1104/pp.010188
  12. Hetz, W., F. Hochholdinger, M. Schwall and G. Feix. 1996. Isolation and characterization of rtcs, a maize mutant deficient in the formation of nodal roots. Plant J. 10, 845-857 https://doi.org/10.1046/j.1365-313X.1996.10050845.x
  13. Iino, M., C. Long and X. Wang. 2001. Auxin- and abscisic acid-dependent osmoregulation in protoplasts of Phaseolus vulgaris Pulvini. Plant Cell Physiol. 42, 1219-1227 https://doi.org/10.1093/pcp/pce157
  14. Jia, W., Y. Wang, S. Zhang, and J. Zhang. 2002. Salt-stress-induced ABA accumulation is more sensitively triggered in roots than in shoots. J. Exp. Bot. 53, 2201-2206 https://doi.org/10.1093/jxb/erf079
  15. Junghans, U., A. Polle, P. Düchting, E Weiler, B. Kuhlman, F. Gruber and T. Teichmann. Adaptation to high salinity in poplar involves changes in xylem anatomy and auxin physiology. Plant Cell Environment 29, 1519-1531
  16. Keller, C. P. and E. van Volkenburgh. 1996. The electrical response of Avena coleoptile cortex to auxins; Evidence in vivo for activation of a $Cl^-$ conductance. Planta 198, 404-412 https://doi.org/10.1007/BF00620057
  17. Kurth, E., G. R. Cramer, A. Lauchli and E. Epstein. 1986. Effects of NaCl and $CaCl_2$ on cell enlargement and cell production in cotton roots. Plant Physiol. 82, 1102-1106 https://doi.org/10.1104/pp.82.4.1102
  18. Lee, J. S. and M. L. Evans. 1985. Polar auxin transport of auxin across gravistimulated roots of maize and its enhancement by calcium. Plant Physiol. 77, 824-827 https://doi.org/10.1104/pp.77.4.824
  19. Lee, J. S., T. J. Mulkey and M. L. Evans. 1983. Gravity-induced polar transport of calcium across root tips of maize. Plant Physiol. 73, 874-876 https://doi.org/10.1104/pp.73.4.874
  20. Lee, J. S., T. J. Mulkey and M. L. Evans. 1983. Reversible loss of gravitropic sensitivity in maize roots after tip application of calcium chelators. Science 220, 1375-1376 https://doi.org/10.1126/science.220.4604.1375
  21. Leyser, O. and S. Day. 2003. Mechanisms in plant development. Blackwell, Oxford
  22. Omokawa, H. and S. Aonuma. 2002. Amelioration of the salt-stressed root growth of rice and normalization of the $Na^+$ distribution between the shoot and root by (S)-alphamethylbenzyl- 2-fluoro-4-methylphenylurea. Biosci. Biotechnol. Biochem. 66, 336-343 https://doi.org/10.1271/bbb.66.336
  23. Philippar. K., I. Fuchs, H. Luthen, S, Hoth, C. S. Bauer, K. Haga, G. Thiel, K. Ljung, G. Sandberg, M. Bottger, D. Becker and R. Hedrich. 1999. Auxin-induced $K^+$ channel expression represents an essential step in coleoptile growth and gravitropism. Proc. Natl. Acad. Sci. U.S.A. 96, 12186-12191
  24. Raschke, K. and H. Schinabl. 1978. Availability of chloride affects the balance between potassium chloride and potassium malate in guard cells of Vicia faba L. Plant Physiol. 62, 84-87 https://doi.org/10.1104/pp.62.1.84
  25. Rubinstein, B. 1973. Indoleacetic-acid-enhanced chloride uptake into coleoptile cells. Planta 110, 43-56 https://doi.org/10.1007/BF00386921
  26. Rubinstein, B. 1974. Effect of pH and auxin on chloride uptake into Avena coleoptile cells. Plant Physiol. 54, 835-839 https://doi.org/10.1104/pp.54.6.835
  27. Sahi, C., A. Singh, K. Kumar, E. Blumwald and A. Grover. 2006. Salt stress response in rice: genetics, molecular biology, and comparative genomics. Functn. Integr. Genomics. 6, 263-284 https://doi.org/10.1007/s10142-006-0032-5
  28. Schroder, J. I., C. Schmidt and J. Sheaffer. 1993. Identification of High-affinity slow anion channel blockers and evidence for stomatal regulation by slow anion channels in guard cells. Plant Cell 5, 1831-1841 https://doi.org/10.1105/tpc.5.12.1831
  29. Schwartz, A., N. Ilan, M. Schwarz, J. Scheaffer, S. M. Assnmann and J. I. Schroder. 1995. Anion-channel blockers inhibit S-type anion channels and abscisic acid response in guard cells. Plant Physiol. 109, 651-658 https://doi.org/10.1104/pp.109.2.651
  30. Shi, H. and J. K. Zhu. 2002. Regulation of expression of the vacuolar $Na^+/K^+$ antiporter gene AtNHX1 by salt stress and ABA. Plant Mol. Biol. 50, 543-550 https://doi.org/10.1023/A:1019859319617
  31. Smirnoff, N. 1993. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol. 125, 27-58 https://doi.org/10.1111/j.1469-8137.1993.tb03863.x
  32. Sun, F., W. Zhang, H. Hu, B. Li, Y. Wang, Y. Zhao, K. Li, M. Liu and X. Li. 2007. Salt modulates gravity signaling pathway to regulate growth direction of primary roots in Arabidopsis. Plant Physiol. 146, 178-188 https://doi.org/10.1104/pp.107.109413
  33. Thimann, K. V. 1977. Hormone action in the whole life of plants. The university of Massachusetts Press, Amherst
  34. Thomine, S., F. Lelievre, M. Boufflet, J. Guern and H. Barbier-Brygoo. 1997. Anion-channel blockers interfere with auxin responses in dark-grown Arabidopsis hypocotyls. Plant Physiol. 115, 533-542 https://doi.org/10.1104/pp.115.2.533
  35. Xiong, L. and J. K. Zhu. 2003. Regulation of abscisic acid biosynthesis. Plant Physiol. 133, 29-36 https://doi.org/10.1104/pp.103.025395
  36. Zhu, J. K. 2003. Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol. 6, 441-445 https://doi.org/10.1016/S1369-5266(03)00085-2

Cited by

  1. Effects of CsCl on the Early Root Growth of Maize (Zea mays) vol.20, pp.2, 2010, https://doi.org/10.5352/JLS.2010.20.2.298