DOI QR코드

DOI QR Code

돼지 간 유래의 methenyltetrahydrofolate synthetase 반응메커니즘

Kinetic and Chemical Mechanism of Pig Liver Methenyltetrahydrofolate Synthetase

  • 조용권 (창원대학교 자연과학대학 보건의과학과)
  • Cho, Yong-Kweon (Department of Biochemistry and Health Science, College of Natural Sciences, Changwon National University)
  • 발행 : 2008.08.30

초록

$30{\sim}70%$ 황산암모늄 분획, Fast Q 음이온 교환수지 및 Phenyl Agarose 수지를 통해 돼지간유래의 methenyltetrahydrofolate synthetase를 정제하였으며 정제도는 119이었다. SDS-PAGE 및 HPLC를 이용한 gel permeation column chromatography에 의해 이 효소는 분자량이 23 kDa인 단량체로 확인되었다. 최적 온도와 최적 pH는 각각 $35^{\circ}C$ 와 6.5이었다. 이 효소는 tetranitromethane 및 1-ethyl-3-(3-dimethyl aminopropyl)-carbodiimide (EDC)에 의해서만 활성이 감소되었는데, 이는 티로신과 카르복실산이 효소의 활성부위에 존재한다는 것을 나타낸다. 활성부위의 pH 실험으로부터 2개의 티로신이 기질의 결합에 관여하며 하나의 카르복실기가 촉매반응에 관여한다는 사실이 관찰되었다. 따라서 이 효소는 2개의 티로신이 ATP와 5-formylTHF과 결합하며 하나의 카르복실기가 일반염기로서 촉매한다는 것을 알 수 있다.

Methenyltetrahydrofolate synthetase extract was obtained from mouse liver and purified via $30{\sim}70%$ ammonium sulfate fractionation, Fast Q anion exchange and phenyl agarose chromatography. HPLC gel chromatography and SDS-polyacrylamide electrophoresis experiments showed that the enzyme is a monomer with molecular weight of 23 kDa. Optimum temperature and pH were $35^{\circ}C$ and 6.5, respectively. The enzyme was chemically modified only by tetranitromethane and 1-ethyl-3- (3-dimethyl aminopropyl)-carbodiimide (EDC), indicating that tyrosine and carboxylate are in the active site. pH studies showed that 2 tyrosines are involved in the binding of the substrates and a carboxylate in catalysis. Therefore, the chemical mechanism of the enzyme is likely that 2 tyrosines bind to ATP and 5-formylTHFand a carboxylate acts as a general base.

키워드

참고문헌

  1. Bertrand, R., R. E. MacKenzie and J. Jolivet 1987. Human liver methenyltetrahydrofolate synthetase: improved purification and increased affinity for folate polyglutamate substrates. Biochim. Biophys. Acta 911, 154-161 https://doi.org/10.1016/0167-4838(87)90004-5
  2. Bertrand, R., M. Beauchemin and A. Dayan. 1995. Identification and characterization of human mitochondrial methenyltetrahydrofolate synthetase activity. Biochim. Biophys. Acta 1266, 245-249 https://doi.org/10.1016/0167-4889(95)00020-S
  3. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  4. Cho, Y. K. and P. F. Cook. 1989. pH Dependence of the kinetic parameters for the pyrophosphate-dependent phosphofructokinase reaction supports a proton-shuttle mechanism, Biochemistry 28, 4155-4160 https://doi.org/10.1021/bi00436a005
  5. Field, M. S., M. E. Doletha, C. A. Perry and P. J. Stover. 2007. Inhibition of 5,10-methenyltetrahydrofolate synthetase. Arch. Biochem. Biophys. 458, 194-201 https://doi.org/10.1016/j.abb.2006.12.023
  6. Greenberg, D. M., L. K. Wynston and A. Nagabhushan. 1965. Further studies on $N^5$-formyltetrahydrofolic acid cyclodehydrase. Biochemistry 4, 1872-1878 https://doi.org/10.1021/bi00885a026
  7. Grimshaw, C. E., G. B. Henderson and G. G. Soppe. 1984. Purification and properties of 5,10-methenyltetrahydrofolate synthetase from Lactobacillus casei. J. Biol. Chem. 259, 2728-2733
  8. Holmes, W. B. and D. R. Appling. 2002. Cloning and characterization of methenyltetrahydrofolate synthetase from Saccharomyces cerevisiae. J. Biol. Chem. 277, 20205-20213 https://doi.org/10.1074/jbc.M201242200
  9. Hopkins, S. and V. Schirch. 1984. 5,10-Methenyltetrahydrofolate synthetase. purification and properties of the enzyme from rabbit liver. J. Biol. Chem. 259, 5618-5622
  10. Jolivet, J., K. H. Cowan and G. A. Curt. 1983. The pharmacology and clinical use of methotrexate. New Eng. J. Med. 309, 1094-1104 https://doi.org/10.1056/NEJM198311033091805
  11. Jolivet, J., A. Dayan, M. Beauchemin, D. Chahla, A. Mamo and R. Bertrand. 1996. Biochemical and molecular studies of human methenyltetrahydrofolate synthetase. Stem Cells 14, 33-40 https://doi.org/10.1002/stem.140033
  12. Katherine, H., E. P. Chiang, L. R. Lee, J. Hills, B. Shane and P. J. Stover. 2002. Cytoplasmic serine hydroxymethyltransferase mediates competition between folate-dependent deoxyribonucleotide and S-adenosylmethionine biosyntheses. J. Biol. Chem. 277, 38381-38389 https://doi.org/10.1074/jbc.M205000200
  13. Lameli, U. K. 1970. Cleavage of structural proteins during the assembly of the bacteriophage T4. Nature 227, 680-685 https://doi.org/10.1038/227680a0
  14. Lee, S. H., H. I. Choi and W. G. Bang. 1997. Purification and characterization of ascorbic acid phosphorylating enzyme from Cellulomonas sp. AP-7. Kor. J. Appl. Microbiol. Biotechnol. 25, 271-276
  15. Maras, B., P. Stover, S. Valiante, D. Barra and V. Schirch. 1994. Primary structure and tetrahydropteroylglutamate binding site of rabbit liver cytosolic 5,10-methenyltetrahydrofolate synthetase. J. Biol. Chem. 269, 18429-18433