Calcium Absorption and Growth Characteristics of Agrocybe cylindracea Mycelia in Submerged Culture

액체배양 버들송이 균사체의 칼슘흡수 및 생육특성

  • Park, Shin (Division of Life and Environmental Science, Daegu University) ;
  • Gong, Ji-Won (Division of Life and Environmental Science, Daegu University) ;
  • Lee, Kyoung-Seok (Division of Life and Environmental Science, Daegu University)
  • 박신 (대구대학교 생명환경학부) ;
  • 공지원 (대구대학교 생명환경학부) ;
  • 이경석 (대구대학교 생명환경학부)
  • Published : 2008.08.01

Abstract

The present study examined the effects of different calcium (Ca) sources and concentrations on the growth and Ca absorption of Agrocybe cylindracea mycelia grown in submerged cultures. The dry weights of the mycelia were not significantly different (significance level of 5%) according to the type of Ca added, and increased with increasing Ca concentration until 500 mg/L, and then decreased at concentrations of 1000 mg/L or greater. The Ca contents of groups were significantly different according to the various concentrations of the Ca source, in which the Ca content of the control group cultured without added Ca was 198.3 mg/kg, and in the treatment groups, Ca content increased to a minimum of 273.7 mg/kg (1.4 times) and a maximum of 67246.0 mg/kg (339.1 times) the Ca contents of the groups generally increased with increasing Ca concentration. According to the number of culture days, growth rates were highest during days 8 through 12, and remained relatively high until day 16. In addition, Ca contents per unit dry weight were higher in young mycelia with a shorter culture period than in mature mycelia with a longer culture period. According to pH, the most active growth and highest Ca content occurred in MCM liquid medium at pH 7.0. In conclusion, in order to produce Agrocybe cylindracea mycelia with high Ca content, it is considered most efficient to culture them in MCM liquid medium without a pH adjustment and containing 1,000 mg/L of Ca-lactate, which is commonly used as a Ca additive in food, as well as to use mycelia between 12-16 days of culturing.

액체배양 버들송이 균사체의 생육과 칼슘 흡수에 미치는 칼슘원의 영향을 조사하였다. 칼슘원의 종류에 따른 균사체의 건물량은 유의수준 5%에서 유의하지 않았으며, 칼슘원의 농도에 따른 균사체의 건물량은 농도가 500mg/L까지는 대체로 증가하는 경향이었으나 1,000mg/L 이상에서는 감소하는 경향을 보였다. 균사체의 칼슘 함량은 칼슘원의 종류와 농도에 따라 큰 차이를 보였으며, 칼슘원을 첨가하지 않고 배양한 대조구의 Ca 함량은 198.3 mg/kg이었는데 비해 칼슘을 첨가하고 배양한 경우 최소 273.7 mg/kg(1.4배)에서 최대 67,246.0 mg/kg(339.1배)까지 증가하였다. 칼슘원의 농도에 따른 균사체의 Ca 함량은 칼슘원의 농도가 증가함에 따라 균사체의 Ca 함량도 증가하였다. 배양일수에 따른 균사체의 생육은 배양 8-12일 사이 균사체의 생육속도가 가장 높았으며 16일차까지도 비교적 높은 증가율을 보였다. 배양일수에 따른 균사체의 Ca 함량은 배양기간이 짧은 어린 균사체의 경우 배양기간이 긴 성숙된 균사체에 비해 단위 건물량 당 Ca 함량이 높았다. pH에 따라서는 pH 7.0의 MCM 액체배지에서 생육이 가장 활발하였으며 Ca 함량도 가장 높았다. 결론적으로 칼슘 함량이 높은 버들송이 균사체를 생산하기 위해서 체내 흡수율이 좋고 최근 식품의 칼슘첨가제로 많이 이용되는 Ca-lactate 1,000 mg/L를 첨가한 MCM 액체배지에서 pH 조정없이 배양하여 12-16일차의 균사체를 이용하는 것이 가장 효율적이라고 판단된다.

Keywords

References

  1. Chihara G, Himuri J, Maeda YY, Arai Y, Fukuoka F. Fractionation and purification of the polysaccharides with marked antitumor activity, especially, lentinan, from Lentinus edodes (Berk) Sing. Cancer Res. 30: 2776-2781 (1970)
  2. Mizuno T. Bioactive biomolecules and mushrooms: Food function and medicinal effects of mushroom fungi. Food Rev. Int. 11: 7-21 (1995)
  3. Wasser SP. Medicinal mushrooms as a sourse of antitumor and immunomodulatory polysaccharides. Appl. Microbiol. Biot. 60: 258-274 (2002) https://doi.org/10.1007/s00253-002-1076-7
  4. Shiio T, Okunishi M, Okumura S. Fundamental studies on the large scale cultivation of edible fungi. Mushroom Sci. 9: 799-808 (1974)
  5. Song CH, Jeon YJ, Yang BK, Ra KS, Sung JM. The anti-complementary activity of exo-polymers produced from submerged mycelial cultures of higher fungi with particular reference to Cordyceps militaris. J. Microbiol. 8: 536-539 (1988)
  6. Kim HK, Park JS, Kim YS, Park YH. Studies on the artificial cultivation of Agrocybe aegerita (Brig.) using sawdust substrate. Korean J.Mycol. 17: 124-131 (1989)
  7. Lee HD, Kim YG, Kim HG, Han GH, Moon CS, Hur IB. Bottle cultivation of Pleurotus ostreatus and Agrocybe aegerita using artificial by-product. Korean J. Mycol. 26: 47-50 (1998)
  8. Kim HO, Lim JM, Joo JH, Kim SW, Hwang HJ, Choi JW, Yun JW. Optimization of submerged culture condition for the production of mycelial biomass and exopolysaccharides by Agrocybe cylindracea. Bioresource Technol. 96: 1175-1182 (2005) https://doi.org/10.1016/j.biortech.2004.09.021
  9. Cheong JC, Hong IP, Jang KY, Park JS. Culture condition and inoculum volume of liquid spawn on the bottled cultivation of Agrocybe cylindracea. Korean J. Mycol. 31: 94-97 (2003) https://doi.org/10.4489/KJM.2003.31.2.094
  10. Lee HW, Lee DW, Ha HC, Jung IC, Lee JS. Antioxidant activities of the mycelium and culture broth of Phellinus igniarius and Agrocybe cylindracea. Korean J. Mycol. 30: 37-43 (2002) https://doi.org/10.4489/KJM.2002.30.1.037
  11. Tsai SY, Huang SJ, Mau JL. Antioxidant properties of hot water extracts from Agrocybe cylindracea. Food Chem. 98: 670-677 (2006) https://doi.org/10.1016/j.foodchem.2005.07.003
  12. Tsai SY, Tsai HL, Mau JL. Antioxidant properties of Agaricus blazei, Agrocybe cylindracea, and Boletus edulis. Lebensm.-Wiss. Technol. 40: 1392-1402 (2007) https://doi.org/10.1016/j.lwt.2006.10.001
  13. Huang SJ, Tsai SY, Mau JL. Antioxidant properties of methanolic extracts from Agrocybe cylindracea. Lebensm.-Wiss. Technol. 39: 378- 386 (2006)
  14. Lee IK, Yun BS, Yoo ID. A nucleoside with lipid peroxidation inhibitory activity from Agrocybe cylindracea. Korean J. Appl. Microbiol.Biotechnol. 26: 558-561 (1998)
  15. Ha HC, Park S, Park KS, Lee CW, Jung IC, Kim SH, Kwon YI, Lee JS. Isolation and purification of proin bound polysaccharides from the sawdust mycelia of Agrocybe cylindracea. Korean J. Mycol. 23: 121- 128 (1995)
  16. Yoshida I, Kiho T, Usai S, Sakushima M, Ukai S. Polysaccharides in fungi.. Immunomodulating activities of carboxymethylated derivatives of linear (13)-$\alpha$-D-glucans extracted from the fruiting bodies of Agrocybe cylindracea and Amanita muscaria. Biol. Pharm. Bull. 19: 114-121 (1996) https://doi.org/10.1248/bpb.19.114
  17. Chardonnet CO, Sams CE, Conway WS. Calcium effect on the mycelial cell walls of Botrytis cinerea. Phytochemistry 52: 967-973 (1999) https://doi.org/10.1016/S0031-9422(99)00315-5
  18. Moon BW, Kang IK, Lee YC, Nam KW, Choi JS. Effect of tree-spray of liquid calcium compound on the change in cell wall components, cell wall hydrolase, and cell wall structure during cold storage of nonastringent persimmon fruits. J. Korean Soc. Hort. Sci. 43: 443-446 (2002)
  19. Smith KT. Calcium and trace mineral interactions. Cereal Food World 33: 776-777 (1988)
  20. Allen LH. Calcium bioavailability and absorption. Am. J. Clin. Nutr. 35: 738-808 (1982)
  21. Jeong YJ, Kim JN, Seo JH, Kim KY. Effect of liquefied calcium supplement in bone mineral density in middle-aged women. J. Korean Soc. Food Sci. Nutr. 33: 995-999 (2004) https://doi.org/10.3746/jkfn.2004.33.6.995
  22. Bae TJ, Kang DS. Processing of powdered seasoning material from sea tangle. Korean J. Food Nutr. 13: 521-528 (2000)
  23. Kim ST, Lee JU, Choi BS, Lee BJ. Determination of germanium in ginseng radix by hydride generation-inductively coupled plasma spectrometry. Anal. Sci. 1: 203-209 (1988)
  24. Lee ST, Lee YH, Lee HJ, Jo JS, Heo JS. Germanium contents of soil and crops in Gyeongnam province. Korean J. Environ. Agric. 24: 34- 39 (2005) https://doi.org/10.5338/KJEA.2005.24.1.034