Elevated C-reactive Protein Levels are a Sign of Pulmonary Arterial Hypertension in AECOPD

만성 폐쇄성 폐질환 급성 악화 시 C-반응단백과 폐동맥 고혈압의 관계

  • Kim, So Ri (Department of Internal Medicine, Airway Remodeling Laboratory, Chonbuk National University Medical School) ;
  • Choe, Yeong Hun (Department of Internal Medicine, Airway Remodeling Laboratory, Chonbuk National University Medical School) ;
  • Lee, Ka Young (Department of Internal Medicine, Airway Remodeling Laboratory, Chonbuk National University Medical School) ;
  • Min, Kyung Hoon (Department of Internal Medicine, Airway Remodeling Laboratory, Chonbuk National University Medical School) ;
  • Park, Seoung Ju (Department of Internal Medicine, Airway Remodeling Laboratory, Chonbuk National University Medical School) ;
  • Lee, Heung Bum (Department of Internal Medicine, Chonbuk National University Medical) ;
  • Lee, Yong Chul (Department of Internal Medicine, Airway Remodeling Laboratory, Chonbuk National University Medical School) ;
  • Rhee, Yang Keun (Department of Internal Medicine, Chonbuk National University Medical)
  • 김소리 (전북대학교 의과대학 내과학교실) ;
  • 최영훈 (전북대학교 의과대학 내과학교실) ;
  • 이가영 (전북대학교 의과대학 내과학교실) ;
  • 민경훈 (전북대학교 의과대학 내과학교실) ;
  • 박성주 (전북대학교 의과대학 내과학교실) ;
  • 이흥범 (전북대학교 의과대학 내과학교실) ;
  • 이용철 (전북대학교 의과대학 내과학교실) ;
  • 이양근 (전북대학교 의과대학 내과학교실)
  • Received : 2007.12.24
  • Accepted : 2008.01.31
  • Published : 2008.02.28

Abstract

Background: In chronic obstructive pulmonary disease (COPD) patients, the serum levels of C-reactive protein (CRP) are elevated and an increase of CRP is more exaggerated in the acute exacerbation form of COPD (AECOPD) than in stable COPD. Pulmonary arterial hypertension is a common complication of COPD. An increased level of CRP is known to be associated with the risk of systemic cardio-vascular disorders. However, few findings are available on the potential role of CRP in pulmonary arterial hypertension due to COPD. Methods: This study was performed prospectively and the study population was composed of 72 patients that were hospitalized due to AECOPD. After receiving acute management for AECOPD, serum CRP levels were evaluated, arterial oxygen pressure ($PaO_2$), was measured, and the existence of pulmonary arterial hypertension under room air inhalation was determined in the patients. Results: The number of patients with pulmonary arterial hypertension was 47 (65.3%)., There was an increased prevalence of pulmonary arterial hypertension and an increase of serum CRP levels in patients with the higher stages of COPD (e.g., patients with stage 3 and stage 4 disease; P<0.05). The mean serum CRP levels of patients with pulmonary arterial hypertension and without pulmonary arterial hypertension were $37.6{\pm}7.4mg/L$ and $19.9{\pm}6.6mg/L$, respectively (P<0.05). However, there was no significant difference of the mean values of $PaO_2$ between patients with pulmonary arterial hypertension and without pulmonary arterial hypertension statistically ($77.8{\pm}3.6mmHg$ versus $87.2{\pm}6.0mmHg). Conclusion: We conclude that higher serum levels of CRP can be a sign for pulmonary arterial hypertension in AECOPD patients.

연구배경: COPD 환자에서 혈청 C-반응단백은 증가하는 것으로 알려져 있으며 이러한 변화는 급성 악화 시 보다 두드러진다. 폐동맥 고혈압은 COPD의 흔한 합병증 중 하나이며, C-반응단백은 전신적 심혈관계 질환 발생 위험과 밀접한 관련이 있다고 알려져 왔다. 하지만, COPD에서 이차적으로 발생하는 폐동맥 고혈압에 대한 C-반응단백의 영향에 대해서는 연구가 미비한 상태이다. 방법: 본 연구는 AECOPD에 대해 입원 치료를 시작한 72명의 환자를 대상으로 전향적으로 연구하였다. 환자들은 AECOPD에 대한 즉각적인 치료를 받았고 입원 2일 또는 3일째 실내 환기 하에서 혈청 C-반응단백, 동맥혈 산소 분압, 폐동맥 고혈압에 대한 이환 여부 등에 대한 검사를 시행 받았다. 결과: 폐동맥 고혈압에 이환된 환자는 47명으로 전체 환자 중 65.3%에 달하였다. COPD의 중증도가 심할수록 폐동맥 고혈압의 이환율과 C-반응단백 평균치가 증가하였고, C-반응단백 평균치가 증가할수록 평균 우심실 수축압 역시 증가하는 것을 관찰할 수 있었다. 폐동맥 고혈압 환자군과 비환자군에서 C-반응단백은 각각 $37.6{\pm}7.4mg/L$$19.9{\pm}6.6mg/L$ 통계적으로 의미 있게 폐동맥고혈압 환자군에서 높았지만, 동맥혈 산소분압은 양 군간 의미 있는 차이를 보이지 않았다($77.8{\pm}3.6mmHg$ vs. $87.2{\pm}6.0mmHg$). 결론: 본 연구는 COPD의 급성 악화 시 증가된 C-반응 단백은 폐동맥 고혈압의 이환 여부와 밀접한 관련이 있는 것을 보여 주고 있으며, 이는 COPD의 예후에 심혈관계 질환의 이환 여부가 중요하다는 점을 감안할 때 C-반응단백의 COPD에 대한 독립적 예후인자로서의 가능성을 시사해 준다.

Keywords

References

  1. Barnes PJ, Shapiro SD, Pauwels RA. Chronic obstructive pulmonary disease: molecular and cellular mechanisms. Eur Respir J 2003;22:672-88 https://doi.org/10.1183/09031936.03.00040703
  2. Fabbri LM, Rabe KF. From COPD to chronic systemic inflammatory syndrome? Lancet 2007;370:797-9 https://doi.org/10.1016/S0140-6736(07)61383-X
  3. Barnes PJ. Chronic obstructive pulmonary disease. N Engl J Med 2000;343:269-80 https://doi.org/10.1056/NEJM200007273430407
  4. Vernooy JH, Kucukaycan M, Jacobs JA, Chavannes NH, Buurman WA, Dentener MA, et al. Local and systemic inflammation in patients with chronic obstructive pulmonary disease: soluble tumor necrosis factor receptors are increased in sputum. Am J Respir Crit Care Med 2002;166:1218-24 https://doi.org/10.1164/rccm.2202023
  5. Gan WQ, Man SF, Senthilselvan A, Sin DD. Association between chronic obstructive pulmonary disease and systemic inflammation: a systematic review and a meta-analysis. Thorax 2004;59:574-80 https://doi.org/10.1136/thx.2003.019588
  6. Pinto-Plata VM, Mullerova H, Toso JF, Feudjo-Tepie M, Soriano JB, Vessey RS, et al. C-reactive protein in patients with COPD, control smokers and non-smokers. Thorax 2006;61:23-8 https://doi.org/10.1136/thx.2005.042200
  7. Eid AA, Ionescu AA, Nixon LS, Lewis-Jenkins V, Matthews SB, Griffiths TL, et al. Inflammatory response and body composition in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2001;164:1414-8 https://doi.org/10.1164/ajrccm.164.8.2008109
  8. Barbera JA, Peinado VI, Santos S. Pulmonary hypertension in chronic obstructive pulmonary disease. Eur Respir J 2003;21:892-905 https://doi.org/10.1183/09031936.03.00115402
  9. Wright JL, Levy RD, Churg A. Pulmonary hypertension in chronic obstructive pulmonary disease: current theories of pathogenesis and their implications for treatment. Thorax 2005;60:605-9 https://doi.org/10.1136/thx.2005.042994
  10. Barbera JA, Riverola A, Roca J, Ramirez J, Wagner PD, Ros D, et al. Pulmonary vascular abnormalities and ventilation-perfusion relationships in mild chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1994;149:423-9 https://doi.org/10.1164/ajrccm.149.2.8306040
  11. Peinado VI, Barbera JA, Abate P, Ramirez J, Roca J, Santos S, et al. Inflammatory reaction in pulmonary muscular arteries of patients with mild chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1999;159:1605-11 https://doi.org/10.1164/ajrccm.159.5.9807059
  12. Stevens T, Janssen PL, Tucker A. Acute and long-term TNF-alpha administration increased pulmonary vascular reactivity in isolated rat lungs. J Appl Physiol 1992;73:708-12 https://doi.org/10.1152/jappl.1992.73.2.708
  13. Fujita M, Shannon JM, Irvin CG, Fagan KA, Cool C, Augustin A, et al. Overexpression of tumor necrosis factor-alpha produces an increase in lung volumes and pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2001;280:L39-49
  14. Ortiz LA, Lasky J, Hamilton RF Jr, Holian A, Hoyle GW, Banks W, et al. Expression of TNF and the necessity of TNF receptors in bleomycin-induced lung injury in mice. Exp Lung Res 1998;24:721-43 https://doi.org/10.3109/01902149809099592
  15. Dorfmuller P, Perros F, Balabanian K, Humbert M. Inflammation in pulmonary arterial hypertension. Eur Respir J 2003;22:358-63 https://doi.org/10.1183/09031936.03.00038903
  16. Lakoski SG, Cushman M, Palmas W, Blumenthal R, D'Agostino RB Jr, Herrington DM. The relationship between blood pressure and C-reactive protein in the Multi-Ethnic Study of Atherosclerosis (MESA). J Am Coll Cardiol 2005;46:1869-74 https://doi.org/10.1016/j.jacc.2005.07.050
  17. Venugopal SK, Devaraj S, Yuhanna I, Shaul P, Jialal I. Demonstration that C-reactive protein decreases eNOS expression and bioactivity in human aortic endothelial cells. Circulation 2002;106:1439-41 https://doi.org/10.1161/01.CIR.0000033116.22237.F9
  18. Verma S, Li SH, Badiwala MV, Weisel RD, Fedak PW, Li RK, et al. Endothelin antagonism and interleukin-6 inhibition attenuate the proatherogenic effects of C-reactive protein. Circulation 2002;105:1890-6 https://doi.org/10.1161/01.CIR.0000015126.83143.B4
  19. Joppa P, Petrasova D, Stancak B, Tkacova R. Systemic inflammation in patients with COPD and pulmonary hypertension. Chest 2006;130:326-33 https://doi.org/10.1378/chest.130.2.326
  20. Leopold JG, Gough J. The centrilobular form of hypertrophic emphysema and its relation to chronic bronchitis. Thorax 1957;12:219-35 https://doi.org/10.1136/thx.12.3.219
  21. Riely DJ, Thakker-Varia S, Poiani GJ, Tozzi CA. Vascular remodeling. In: Crystal RG, West JB, Barnes PJ, Weibel ER, editors. The lung: scientific foundations. Philadelphia: Lippincott-Raven; 1977. p. 1589-68
  22. MacNee W. Pathophysiology of cor pulmonale in chronic obstructive pulmonary disease: part two. Am J Respir Crit Care Med 1994;150:1158-68 https://doi.org/10.1164/ajrccm.150.4.7921453
  23. Skjaerpe T, Hatle L. Diagnosis of tricuspid regurgitation. Sensitivity of Doppler ultrasound compared with contrast echocardiography. Eur Heart J 1985;6:429-36 https://doi.org/10.1093/oxfordjournals.eurheartj.a061882
  24. Yock PG, Popp RL. Noninvasive estimation of right ventricular systolic pressure by Doppler ultrasound in patients with tricuspid regurgitation. Circulation 1984;70:657-62 https://doi.org/10.1161/01.CIR.70.4.657
  25. Tramarin R, Torbicki A, Marchandise B, Laaban JP, Morpurgo M. Doppler echocardiographic evaluation of pulmonary artery pressure in chronic obstructive pulmonary disease. A European multicentre study. Working Group on Noninvasive Evaluation of Pulmonary Artery Pressure. European Office of the World Health Organization, Copenhagen. Eur Heart J 1991;12:103-11
  26. Higham MA, Dawson D, Joshi J, Nihoyannopoulos P, Morrell NW. Utility of echocardiography in assessment of pulmonary hypertension secondary to COPD. Eur Respir J 2001;17:350-5 https://doi.org/10.1183/09031936.01.17303500
  27. Knighton DR, Hunt TK, Scheuenstuhl H, Halliday BJ, Werb Z, Banda MJ. Oxygen tension regulates the expression of angiogenesis factor by macrophages. Science 1983;221:1283-5 https://doi.org/10.1126/science.6612342
  28. Ridker PM. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation 2003;107:363-9 https://doi.org/10.1161/01.CIR.0000053730.47739.3C
  29. Broekhuizen R, Wouters EF, Creutzberg EC, Schols AM. Raised CRP levels mark metabolic and functional impairment in advanced COPD. Thorax 2006;61:17-22 https://doi.org/10.1136/thx.2005.041996
  30. Stolz D, Christ-Crain M, Morgenthaler NG, Leuppi J, Miedinger D, Bingisser R, et al. Copeptin, C-reactive protein, and procalcitonin as prognostic biomarkers in acute exacerbation of COPD. Chest 2007;131:1058-67 https://doi.org/10.1378/chest.06-2336
  31. Sin DD, Man SF. Why are patients with chronic obstructive pulmonary disease at increased risk of cardiovascular diseases? The potential role of systemic inflammation in chronic obstructive pulmonary disease. Circulation 2003;107:1514-9 https://doi.org/10.1161/01.CIR.0000056767.69054.B3
  32. Mannino DM, Ford ES, Redd SC. Obstructive and restrictive lung disease and markers of inflammation: data from the Third National Health and Nutrition Examination. Am J Med 2003;114:758-62 https://doi.org/10.1016/S0002-9343(03)00185-2
  33. de Torres JP, Cordoba-Lanus E, Lopez-Aguilar C, Muros de Fuentes M, Montejo de Garcini A, Aguirre-Jaime A, et al. C-reactive protein levels and clinically important predictive outcomes in stable COPD patients. Eur Respir J 2006;27:902-7 https://doi.org/10.1183/09031936.06.00109605