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Abstract. Quality function deployment (QFD) provides a specific approach for ensuring quality throughout each 
stage of the product development and production process. Since the focus of QFD is placed on the early stage of 
product development, the uncertainty in the input information of QFD is inevitable. If the uncertainty is 
neglected, the QFD analysis results are likely to be misleading. It is necessary to equip practitioners with a new 
QFD methodology that can model, analyze, and dampen the effects of the uncertainty and variability in a 
systematic manner. Robust QFD is an extended version of QFD methodology, which is robust to the uncertainty 
of the input information and the resulting variability of the QFD output. This paper discusses recent research 
issues in Robust QFD. The major issues are related with the determination of overall priority, robustness 
evaluation, robust prioritization, and web-based Robust QFD optimizer. Our recent research results on the issues 
are presented, and some of future research topics are suggested. 
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1.  INTRODUCTION 

Quality Function Deployment (QFD) is a concept 
and mechanism for translating the “voice of the cus-
tomer” through the various stages of new product devel-
opment. The basic concept of QFD is to translate the 
desires of the customer into product design or engineer-
ing characteristics, and subsequently into parts charac-
teristics, process plans, and production requirements 
associated with its manufacture. Ideally, each translation 
uses a chart, called “house of quality (HOQ)”. 

The house of quality chart is the principal tool for 
QFD. There are a set of standard components of an 
HOQ, including customer attributes (CAs) and their 
relative weights, engineering characteristics (ECs), rela-
tionship matrix between CAs and ECs, correlation ma-
trix among ECs, CA and EC benchmarking data, and EC 
importance values and their target levels.  

The QFD analysis prioritizes the ECs by utilizing 
the information given in the HOQ. In typical QFD ap-
plications, a cell (i, j) in the relationship matrix (i-th row, 
j-th column) of an HOQ chart is assigned 1, 3, 9 (or 1, 3, 
5) to represent a weak, medium, and strong relationship, 

respectively, between CAi (i-th CA) and ECj (j-th EC). 
The importance value of an EC is computed using the 
CA weights and the corresponding relationship coeffi-
cients. For each EC, the EC importance (ECI) value is 
computed as 

 

1

m

j i ij
i

ECI w f
=

= ∑ ,      (1) 

 
where ECIj is the ECI value of ECj (j = 1, …, n), wi is 
the relative weight of CAi (I = 1, …, m), and fij is the 
relationship coefficient representing the strength of the 
relationship between CAi and ECj. Once the ECI values 
are computed, the ECs are prioritized by simply compar-
ing the ECI values. The result of prioritization is used as 
the basis for making important decisions in the down-
stream phases 

In the conventional QFD, the prioritization of ECs 
is conducted under an assumption that all the input in-
formation is certain. As a result, the ECI values are also 
treated as certain. However, since the focus of QFD is 
placed on the early stage of new product development, 
the uncertainty in the input information of QFD is inevi-
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table (Kim et al., 2000; Xie et al., 2003). If the uncer-
tainty is neglected, the QFD analysis results can be mis-
leading. In this view, a new QFD methodology that can 
model, analyze, and dampen the effects of the uncer-
tainty in a systematic manner is warranted. 

Robust QFD is an extended version of the QFD 
methodology, which is capable of considering the uncer-
tainty of the input information (e.g., CA weights) and 
the resulting variability of the output (e.g., ECI values). 
In Robust QFD, the uncertainty of the input information 
is first modeled quantitatively. Utilizing the modeled 
uncertainty, the variability of the QFD output is formally 
analyzed. Given the variability of the QFD output, the 
ECs are prioritized. Finally, the robustness of the priori-
tization decision on ECs is evaluated and strategies for 
improving the robustness are devised (Kim et al., 2007). 

The purpose of this paper is to introduce some of 
the recent research issues in Robust QFD and present 
the research progress to date. The research issues men-
tioned in this paper are as follows: determination of 
overall priority, robustness evaluation, robust prioritiza-
tion, and development of web-based Robust QFD opti-
mizer. These issues are mainly concerned with strength-
ening the methodological aspect of Robust QFD. 

Section 2 briefly describes the Robust QFD meth-
odology. Section 3 presents some recent research issues 
and briefly describes the progress on these issues. Sec-
tion 4 presents some of future research topics. Finally, 
concluding remarks are given in Section 5. 

2.  ROBUST QFD METHODOLOGY 

The Robust QFD methodology consists of four ma-
jor steps-uncertainty modeling, variability derivation, 
EC prioritization, and robustness evaluation and impro-
vement. The first three steps conceptually correspond to 
the three major tasks of the conventional QFD, namely, 
collecting HOQ input information, computing the ECI 
value of ECj (ECIj), and prioritizing the ECs, respec-
tively. The difference is that we now consider the uncer-
tainty and its effect on the decision process. The fourth 
step, which is new and did not exist in the conventional 
QFD, is introduced to evaluate and enhance the validity 
of the QFD decisions. For simplicity, the description is 
given assuming that uncertainty is allowed in the CA 
weights (wi) only, and variability is considered only for 
the ECI value (The proposed model can be extended, if 
desired, to include uncertainty and variability in other 
parts of the HOQ) . 

 
Step 1: Uncertainty Modeling 

This step represents the degree and pattern of un-
certainty in a quantitative manner. The wi is considered a 
random variable. Hence, wi has a probability distribution, 
rather than being a fixed point as in the conventional 
QFD model. The distribution of wi can be assessed if the 

raw data on wi are available. If the raw data on wi are not 
available, the distribution of wi needs to be assumed. 
The choice of the assumed distribution should be made 
based on various customer-related factors such as the 
size, attributes, and degree of homogeneity of the cus-
tomer group. 

 
Step 2: Variability Derivation 

This step derives the variability of the ECI value, a 
major output of QFD, as a consequence of the input 
uncertainty. In the proposed model, wi is a random vari-
able, and hence ECIj is another random variable. In gen-
eral, the distribution of ECIj is not identifiable analyti-
cally. A simulation approach can be employed to empiri-
cally derive the distribution of ECIj (Law and Kelton, 
2000). In this step, the variability of ECI is derived thro-
ugh a simulation experiment. In the k-th iteration of the 
simulation (k = 1, …, K), a random number correspond-
ing to wi (denoted as wi(k)) is generated using the esti-
mated distribution function. The corresponding ECIj (de-
noted as ECIj(k))is computed using Equation (1), with 
wi(k) substituted for wi. 

 
Step 3: EC Prioritization 

This step prioritizes the ECs based on the distribu-
tion of ECIj, i.e., ECIj(k), derived in Step 2. The prioriti-
zation can be conducted in various ways depending on 
the type of the ECIj distributions. There are a few meth-
ods to prioritize the given alternatives based on their 
distributions. Examples include parametric or nonpara-
metric tests (Montgomery and Runger, 2003), stochastic 
dominance (Hadar and Russell, 1969), and linear partial 
ordering (Kmietowicz and Pearman, 1984). Such meth-
ods can only provide the pairwise priorities. 

However, an overall priority is needed for subse-
quent decisions in QFD because the pairwise priorities 
do not directly show the relative priority among more 
than two ECs. That is, the set of pairwise priorities has 
to be transformed into the overall priority. The determi-
nation of the overall priority will be described in Section 
3.1. 

 
Step 4: Robustness Evaluation and Improvement 

The EC prioritization performed in Step 3 is not de-
terministic in nature. Hence, the possibility of making 
an error in prioritization always exists. Then, the stabil-
ity of the prioritization decision is of concern, which is 
referred to as ‘robustness’ in this paper. Indices evaluat-
ing the degree of robustness can be developed. The ro-
bustness evaluation and robustness indices will be de-
scribed in detail in Section 3.2. Using the robustness 
indices, various analyses can be performed to devise 
effective strategies to improve the robustness. As part of 
the robustness improvement, the notion of robust priori-
tization will be described in Section 3.3. The robust pri-
oritization identifies a set of ECs or a priority relation-
ship among ECs with a high level of robustness. 
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3.  RECENT RESEARCH ISSUES 

In this section, four recent research issues in Ro-
bust QFD are presented-(i) determination of overall 
priority, (ii) robustness evaluation, (iii) robust prioriti-
zation, and (iv) development of web-based Robust 
QFD Optimizer. A detail description for each issue is 
given next. 

3.1 Determination of Overall Priority 

The first issue is to determine the overall priority 
among ECs. Many authors studied on the determination 
of the overall priority from pairwise priorities (Brunk, 
1960; Kendall, 1955; Saaty, 1977). The existing works 
have been focused on the case where the pairwise priori-
ties are certain. As a result, the overall priority is also 
treated as stable. On the other hand, in Robust QFD, 
some degree of uncertainty is inevitably involved in the 
pairwise priorities. Hence, the existing methods cannot 
be directly applied to the situation of Robust QFD.  

A new method to determine the overall priority 
among the ECs that is robust to the uncertainty of input 
information is under development (Kim and Kim, 2006). 
The method considers uncertainty by assigning a differ-
ent or tie ranking flexibly. The flexible assignment of a 
different or tie ranking means that it assigns not only 
different ranking to ECs whose priorities are clearly 
different, but it also assigns tie ranking to ECs whose 
priorities are not clearly different. 

This method determines the overall priority from a 
pairwise probability matrix, P = {pij}, where pij is a 
pairwise probability of ECi being favored over ECj. The 
pij is computed by comparing ECIi(k) and ECIj(k). The 
portion that ECIi(k) is larger than ECIj(k) is obtained as 
pij. P is popularly used since it poses less burden on de-
cision-makers than other types of pairwise comparisons 
(Cook and Kress, 1988). 

Hypothetical example of overall priority from the 
method is given in Figure 1. In Figure 1, G(r) denotes r-
th ranked group (i.e., a set of ECs that have r-th ranking), 
n(G(r)) denotes the size of G,(r) and N denotes the num-
ber of groups. From Figure 1, we can easily observe that 
highly robust overall priority should simultaneously 
have a large difference of priorities between groups and 
a large similarity of priorities within groups. 
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Figure 1. Example of an overall priority. 

 
We shall call the difference of priorities between 

groups ‘separation’ between groups; and the similarity 
of priorities within groups ‘homogeneity’ within groups. 
That is, a highly robust overall priority should have a 

relatively large separation between groups and a rela-
tively large homogeneity within groups simultaneously, 
similarly to rational subgroups in statistical process con-
trol (Montgomery, 1985). In this section, the separation 
between groups and the homogeneity within groups will 
be referred to as the separation and the homogeneity, 
respectively, for simplicity. 

The separation and the homogeneity can be meas-
ured using P. First, the separation is represented as a 
geometric mean of pij where ECi and ECj have r-th and 
(r +1)-th ranking, respectively. The equation for the 
separation is expressed as 
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The separation is a larger-the-better type index, and 

it has a value between [0, 1]. Let the separation be de-
fined as 1 if every EC has a tie ranking, i.e., N is one. 
The separation becomes 0 when at least one pij is 0, 
where ECi and ECj are included in G(r) and G(r+1), re-
spectively. That is, the probability of r-th ranked EC 
being favored over (r+1)-th ranked EC is 0. It indicates 
that the ranking between r-th and (r+1)-th is definitely 
reversed. The separation becomes 1 when every pij is 1 
for ECi and ECj in G(r) and G(r+1), respectively. This case 
is the best case because no rank reversals occur. 

Second, the homogeneity can be represented as a 
two fold of the geometric mean of the pij where both ECi 
and ECj have r-th ranking. The equation for the homo-
geneity is expressed as 
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The homogeneity is a larger-the-better type index, 

and it has a value between [0, 1]. Let the homogeneity 
be defined as 1 if every EC has a different ranking, i.e., 
every n(G(r)) is one. The homogeneity also becomes 1 if 
every pij is 0.5 for ECi and ECj both in G(r). The pij being 
0.5 means that the priorities of ECi and ECj are exactly 
the same. In such a case, the homogeneity should have 
the largest value, 1. On the other hand, the homogeneity 
becomes 0 if any pij of tie ranked ECs is 0. It represents 
a contradictory situation because a tie ranking is as-
signed to the ECs whose real priorities are clearly dif-
ferent. 

There is a trade-off relationship between the sepa-
ration and the homogeneity. When the every ECs has a 
tie ranking, the separation has the largest value, 1, but 
the homogeneity has a relatively low value. In contrast, 
the homogeneity has the largest value, 1, but the separa-
tion is low, when the every ECs has a different ranking. 
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In order to reach the overall priority, one needs to find a 
set of rankings where the separation and the homogene-
ity are reasonably high. Such a compromising point can 
be found using heuristic methods such as genetic algo-
rithm. 

3.2 Robustness Evaluation 

The second issue is related to the evaluation of ro-
bustness of the prioritization decision (Step 4) in Robust 
QFD. Based on the pairwise or overall priority of ECs, a 
company would make a prioritization decision on the 
ECs. In order to justify the prioritization decision, a sys-
tematic method for checking its robustness is warranted. 
Robustness indices for this purpose are under develop-
ment (Kim and Kim, 2008). 

Two robustness indices for two types of prioritiza-
tion decisions are considered: (i) determining the abso-
lute ranking of ECs and (ii) determining the priority 
relationship among ECs. First, the robustness of the 
absolute ranking of ECs can be defined as the degree to 
which the ECs of interest have a higher or equal ranking 
than a pre-specified ranking (q) despite uncertainty. 
Here, the set of the ECs of interest will be referred to as 
EC. The robustness index on the absolute ranking of 
ECs is expressed as the likelihood that every EC in EC 
has a higher or equal ranking than q. The robustness 
index on the absolute ranking of EC, denoted as RI1(EC, 
q), can be calculated via simulation as 
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where ranking(ECj, k) denotes the ranking of ECj in the 
k-th iteration of simulation and x(k) is an indicator vari-
able. 

Second, the robustness on the priority relationship 
among ECs is defined as the degree to which the relative 
priority relationship among ECs is kept despite uncer-
tainty. For simplicity, the priority relationship among 
ECs will be denoted as V, an array of the EC indices. 
For example, Vexample = [a, b] means that ECa has a 
higher priority than ECb, or in short, ECa; ECb. The 
robustness index on the priority relationship among ECs 
is expressed as the likelihood that a priority relationship 
in V is kept. The robustness index on the priority rela-
tionship, denoted as RI2(V), can be calculated via simu-
lation as 
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where ECV(v) denotes the v-th EC in V, n(V) denotes the 
array size of V, y(k) is an indicator variable. 

Both RI1(EC, q) and RI2(V) have values between 
zero and one. A larger value of RI1(EC, q) or RI2(V) 
means that the robustness of the absolute ranking of ECs 
in EC or the priority relationship in V is higher, respec-
tively. As an extreme case, if RI1(EC※, q) is equal to 
one, the absolute ranking of each EC in EC※ is always 
higher than or equal to q despite uncertainty. Similarly, 
the RI2(V

※) value of one means that the priority rela-
tionship in V※ is always kept despite uncertainty. 

Utilizing the robustness indices defined above, the 
robustness of prioritization decisions (namely, EC or V) 
can be evaluated. Depending upon the situation, RI1(EC, 
q), RI2(V) or both may be utilized in the evaluation. One 
can consider three possible situations given next. The 
first situation is that a company is interested in the top q 
ECs, but not concerned with the priority relationship 
among them. In this situation, RI1(EC, q) will be used. 
This situation may happen when a company wishes to 
allocate its resources on some important ECs. This situa-
tion is analogous to the one of the project selection 
problem (Kim and Kim, 2008). In the second situation, a 
company is interested in finding out the priority rela-
tionship among the given ECs. Then, RI2(V) will be 
used. It will be useful for a company that desires to pri-
oritize the given investment options (Kim and Kim, 
2008). The third situation is that a company is interested 
in identifying some important ECs, and also finding out 
the priority relationship among them. In this situation, 
both RI1(EC, q) and RI2(V) will be used.  

The role of q in RI1(EC, q) is comparable to that of 
the specification limit in a process capability study. As 
such, q should be predetermined by the company. As the 
probability of acceptance increases when the specifica-
tion limit becomes wider, RI1(EC, q) generally increases 
when q increases. In general, the issue of robustness 
becomes more critical as q becomes small. 

3.3 Robust Prioritization 

A robust prioritization refers to the identification of 
a set of ECs (EC*) and/or a priority relationship among 
ECs (V*) with a high level of robustness. That is, a ro-
bust prioritization identifies the most robust EC* or V* 
that maximizes the robustness index, RI1(EC, q) or 
RI2(V). As mentioned in Section 3.2, a company may 
wish to identify EC* by maximizing RI1(EC*, q), or 
identify V* by maximizing RI2(V*), identify not only 
EC* but also V* by considering both RI1(EC*, q) and 
RI2(V*).  

Since the two indices are considered simultane-
ously in the last case, there are many compromising al-
ternative combinations of EC and V. For example, sup-
pose two prioritization decisions D1 = (EC1, V1) and D2 
= (EC2, V2). If RI1(EC1, q) is larger than RI1(EC2, q) 
and RI2(V1) is less than RI2(V2), neither D1 nor D2 
dominates the other, and thus one cannot conclude which 
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prioritization is more robust. Hence, such combinations 
would form an efficient frontier of EC and V. Here an 
efficient frontier is defined as a set of compromising 
alternative combinations of EC and V that cannot be 
identified to be less robust than the others. The final 
EC* and V* should be selected from the alternatives on 
the efficient frontier based on the company’s preference 
trade-off. 

In order to identify EC* or V* that maximizes the 
corresponding robustness index, a full enumeration me-
thod or various heuristic algorithms can be used. Altho-
ugh the full enumeration method requires much compu-
tational burden, it can be used when the number of ECs 
is relatively small. Heuristic algorithms such as genetic 
algorithm can also be used (Rardin, 1998).  

3.4 Development of Web-based Robust QFD 
Optimizer 

The Robust QFD methodology involves much com-
putation such as the estimation of a distribution function 
in Step 1, the generation of random numbers in Step 2, 
prioritization in Step 3, and robustness evaluation in 
Step 4. In order to facilitate the practical application of 
Robust QFD, a systematic support is necessary.  

In this view, a software system for Robust QFD, 
called ‘web-based Robust QFD Optimizer (Web-RQO)’ 
has been developed. Web-RQO, developed in Windows 
and World-Wide-Web (WWW) environment, is design-
ned to collect the input information from distributed 
customers and practitioners through WWW and conduct 
the Robust QFD analysis at the practitioner’s site.  

Web-RQO consists of the web part and the applica-
tion part. First, the web part, developed using ASP (Ac-
tive Server Pages) in WWW environment, collects the 
input information from distributed QFD practitioners 
and customers. The web part provides four functions, 
namely, evaluation function, user management function, 
project management function, and information view 
function. Second, the application part, developed using 
Microsoft Visual Basic, conducts the Robust QFD ana-
lysis at the QFD practitioner’s site. The application part 
provides four functions, namely, data loading function, 
graphical interface function, variability analysis function, 
and robustness evaluation function. The hierarchical struc-
ture of Web-RQO is given in Figure 2.  
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Figure 2. Structure of Web-RQO. 

 
Figure 3 shows the process of activities associated 

with the execution of Web-RQO. QFD practitioners ac-
cess the web part, and input CA and EC items. Then, 
customers access the web part and evaluate the CA wei-

ghts and CA-EC relationships using the evaluation func-
tion. The evaluation information is saved in the database. 
During this process, QFD practitioners can monitor the 
information evaluated by customers. From the database, 
the application part fetches the input information. When 
the application part is executed, the application connects 
to the database in the web server, and obtains the infor-
mation. Using the information, the Robust QFD analysis 
is conducted. Web-RQO allows QFD practitioners to 
collect information from distributed customers easily 
and analyze the effect of input information uncertainty 
in an effective and efficient manner.  
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Figure 3. Process of Activities in Web-RQO Application. 

4. CASE STUDY: ROBUST QFD STUDY 
FOR ADSL QUALITY IMPROVEMENT 

 
This case study was conducted to improve the high-

speed internet service based on the asymmetric digital 
subscriber line (ADSL) technology of Company K in 
Korea. Company K has provided the ADSL service for 
domestic customers since 1999. Currently, Company K 
has more than six million ADSL service subscribers, and 
is considered the leader in this market. As part of the 
quality improvement efforts, Company K conducted this 
QFD study.  

The HOQ in this study includes eleven CA items 
and fourteen EC items. The CA weights were obtained 
from a group of thirty customers-ten customers from Com-
pany K and ten customers each from two of its major 
competitors. For each of the thirty respondents, an inter-
view was conducted to solicit pairwise comparisons of 
the CAs for an AHP analysis. As a result, thirty sets of 
CA weights, one set for each respondent, were obtained. 
The relationship matrix of the HOQ was developed by a 
focus group, which consisted of several staff members 
of Company K and several researchers specializing in 
customer satisfaction management in telecommunica-
tion industry. The relationship between a CA and an EC 
was evaluated using the conventional ‘Strong-Medium-
Weak’ scale. The completed HOQ is shown in Figure 4. 
The CA weight given in Figure 4 indicates the average 
value of the thirty sets of the CA weights. 
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Figure 4. HOQ of the case study. 

 
This case study includes the uncertainty in the wi, 

because all the thirty customers do not have the same 
weights on the CA items. Other input information is 
assumed to be certain for simplicity in this case study. 

 
Step 1: Uncertainty Modeling 

Step 1 estimates the distribution of wi based on the 
thirty sets of wi from thirty customers. The distribution 
function is estimated using a linear interpolation as in 
Figure 5.  
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Figure 5. Estimation of the distribution of w1.  

 
Step 2: Variability Derivation 

Step 2 derives the variability of ECI via a simula-
tion experiment. One thousand sets of ECIj(k) are ob-
tained from the simulation. Figure 6 shows the histo-
gram of ECIj(k), which demonstrates the variability of 
each ECI. 

 
Step 3: EC Prioritization 

Step 3 prioritizes the ECs considering the derived 
variability of ECI. This case study identifies the stochas-
tic dominance relationships and pairwise probability, pij. 
The result of the prioritization is given in Table 1. 

The symbol ‘; ’ (or ‘≺ ’) in the cell (i, j) denotes 
that ECi has a higher (or a lower) priority than ECj, re-
spectively. The symbol ‘≈ ’ in the cell (i, j) denotes that 

the priority between ECi and ECj cannot be differenti-
ated. The value in parentheses in each cell indicates pij, 
computed by comparing ECIi(k) and ECIj(k). 
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Figure 6. Histogram of ECIj(k). 

 
Table 1. Pairwise priorities among ECs. 

 
 
In this case study, a heuristic method is introduced 

to determine the overall priority with high level of sepa-
ration and homogeneity. The method consists of two 
tasks-(i) grouping ECs and (ii) prioritizing groups. Task 
1 groups ECs whose relative rankings cannot be clearly 
differentiated, and Task 2 prioritizes the groups formed 
in Task 1. That is, Task 1 seeks to join two groups whose 
merger leads to the largest homogeneity and Task 2 
finds the order of the groups to maximize the separation. 
The determined overall priority is shown in Figure 7, 
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where the separation and the homogeneity are 0.82414 
and 0.97926, respectively. 
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Figure 7. Overall priority. 
 

Step 4: Robustness Evaluation and Improvement 
In this case study, QFD practitioners make two de-

cisions. First, they decide to monitor ECs in EC = {EC1, 
EC3, EC9, EC2, EC4, EC5} for quality control. Second, 
they also decide to invest on the equipment related to 
EC3, EC9, and EC1 with relative priority as V = [3 9 1], 
where the order is based on the conventional QFD. Be-
fore the execution of the decisions, the robustness on the 
decision-makings should be checked.  

The result of the robustness evaluation on the first 
decision-making is that RI1(EC, q = 6) = 0.4940. It indi-
cates that EC1, EC3, EC9, EC2, EC4, and EC5 have 
higher rankings than the sixth ranking in about half 
cases. Second, the robustness on V is that RI2(V) = 
0.1570. In indicates that the priority relationship, EC3 ; EC9 ; EC1 is kept with a probability 15.7%. The se-
cond decision-making seems very sensitive to uncertainty.  

To improve robustness, QFD practitioners try to 
search for more robust EC or V as mentioned in Section 
3.3. For the first decision-making, unfortunately, there is 
no more robust EC, which includes six ECs. However, 
one can find more robust V for the second decision-
making. The V’ = [3 1 9] with RI2(V’) = 0.4260 is more 
robust than V = [3 9 1] with RI2(V) = 0.1570. This is a 
different result to the conventional QFD. It implies that 
the conventional QFD can mislead decision-makings 
because it cannot consider the uncertainty. 

5.  FUTURE RESEARCH TOPICS 

This section describes some of future research top-
ics in Robust QFD. Currently, Robust QFD is focused 
on the situation where the given uncertainty in input 
information is unchangeable; the uncertainty only in CA 
weights and CA-EC relationship matrix are considered; 
and the uncertainty is due to the heterogeneity of multi-
ple customers. Three research topics are suggested to 
resolve the aforementioned limitations, namely, robust-
ness improvement, consideration of uncertainty in other 
parts of input information, and consideration of multiple 
types of uncertainty. A brief description for each issue is 
given next. 

First, the uncertainty can be reduced under certain 
situations by, for example, collecting more information. 
In such a case, the robustness can be improved by reduc-

ing uncertainty. However, the reduction of uncertainty in 
an ad-hoc manner would be inefficient. In order to im-
prove robustness efficiently, the critical uncertainty, 
which is most responsible for the low robustness, should 
be identified and reduced. For this purpose, the follow-
ing three questions should be answered. “Which uncer-
tainty should be reduced?”; “How much of the uncer-
tainty should be reduced?”; and “How to reduce the un-
certainty?” A further research on these issues is war-
ranted in future studies. 

Second, the input information of QFD other than 
CA weights and CA-EC relationship, may have uncer-
tainty. As an example, the correlation matrix is likely to 
have uncertainty in its assessed entries. Such uncertainty 
would affect the QFD analysis. Hence, a systematic 
method is desired to incorporate the uncertainty in vari-
ous parts of input information in QFD. One possible 
approach is to transfer the uncertainty in the correlation 
matrix (or any other input information) into the CA-EC 
relationship matrix and then focus on handling the un-
certainty of the CA-EC relationship matrix, similarly to 
the normalization idea proposed by Wasserman (1993).  

Third, multiple types of uncertainties may be pre-
sent at the same moment. For example, the CA weights 
may be fuzzy and incomplete as well as heterogeneous 
among customers. Such a case is often encountered in 
practice when, for instance, developing highly innova-
tive products. While the four-step framework of Robust 
QFD is generic enough to accommodate any type of 
uncertainty, the detailed strategies regarding how to per-
form the steps with multiple types of uncertainties are 
yet to be desired. In particular, the uncertainty modeling 
in Step 1 (i.e., how to represent the different types of 
uncertainties in an aggregated, common random variable 
form) would be a challenging task. A more in-depth 
study on this interesting issue is necessary. 

6.  CONCLUDING REMARKS 

In the conventional QFD, it is assumed that all the 
input information is certain. As a result, the EC impor-
tance values, a major output of QFD, are also treated as 
certain. However, since the focus of QFD is placed on 
the early stage of new product development, the uncer-
tainty in the input information of QFD is inevitable.  

This paper has briefly described an extended ver-
sion of QFD methodology, called Robust QFD, which is 
capable of considering the uncertainty of the input in-
formation and the resulting variability of the QFD out-
put. Then, four recent research issues are presented, na-
mely, determination of overall priority, robustness eva-
luation, robust prioritization, and development of Web-
based Robust QFD Optimizer. These research issues are 
still in their early phases and more in-depth studies are 
called for. In order for Robust QFD to be pervasively 
and usefully applied in practice, future research endeav-
ors are expected. 
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