Optimum Condition for Non-Aqueous Dispersion Polymerization of Environmentally-friendly Acrylic Resin

비수계 분산중합에 의한 환경친화적 아크릴 수지 합성의 최적화 연구

  • Oh, Dae Geun (Department of Chemical Engineering, University of Suwon) ;
  • Lee, Kyung Hoon (Department of Chemical Engineering, University of Suwon) ;
  • Kim, Wan Tae (Department of Chemical Engineering, University of Suwon) ;
  • Min, Byung Hoon (Department of Chemical Engineering, University of Suwon) ;
  • Chung, Dae-won (Department of Polymer Science and Engineering, University of Suwon) ;
  • Lee, Jong Doo (Nanokor Co. Ltd.) ;
  • Kim, Jeong Ho (Department of Chemical Engineering, University of Suwon)
  • Received : 2008.03.26
  • Accepted : 2008.06.27
  • Published : 2008.08.10

Abstract

Optimum synthesis conditions were investigated for the non-aqueous dispersion (NAD) polymerization of environmentally-friendly acrylic resin. The optimum amount of stabilizer was observed to be 20 wt% to prevent flocculation of the synthesized polymer particles. The optimum ratio of aliphatic solvents to aromatic solvents turned out to be 80 to 20 in order to obtain a stabilized NAD resins. The viscosity of NAD resins was affected not only by the reaction time but also by the amount of initiator and the impeller rpm. Also, the particle size and the size distribution were influenced by the amount of stabilizers and initiators. Since the stability of NAD resin was devastated by the increase in particle size when all the monomers were fed at the beginning of polymerization, the monomers need to be put into the reactor step by step throughout the entire polymerization process.

비수계 분산(NAD : non-aqueous dispersion) 중합을 이용하여 친환경적인 아크릴 수지를 합성시 최적의 중합조건에 대해 연구하였다. 중합된 고분자 입자들 간의 응집을 방지하기 위한 안정제의 적정량은 20 wt%로 나타났고 안정된 NAD 상태를 유지하기 위한 혼합 용매의 적정 혼합비는 지방족과 방향족 용매의 비율이 80 : 20인 것으로 나타났다. NAD 수지의 점도는 반응시간뿐만 아니라 개시제의 양 및 교반 속도 등에 의해 영향을 받는 것으로 나타났다. 또한 NAD 수지의 입자 크기 및 분포도, 안정제의 양, 개시제의 농도 등에 의해 영향을 받는 것을 확인하였다. 단량체의 투입시기는 단량체를 초기에 모두 투입하면 용매의 극성이 증가하여 입자의 크기가 커져서 입자의 안정성이 저하되므로 단계별로 지속적으로 투입할 필요가 있는 것으로 관찰되었다.

Keywords

References

  1. S.-M. Kim and T.-S. Hwang, Synthesis and Physical Properties of Polycaprolactone Based Polyurethanes Using Aliphatic or Aromatic Diisocyanates, Polymer(Korea), 29, 253 (2005)
  2. Y.-K. Kim and H.-S. Park, A Study on the Synthesis of the Acetated Poly(alkyl metha-crylate-co-2-diethylaminoethyl methacrylate), Polymer(Korea), 17, 49 (1993)
  3. H. V. Harris and S. J. Holder, Octadecyl Acrylate Based Block and Random Copolymers Prepared by ATRP as Comb-like Stabilizers for Colloidal Micro-particle One-step Synthesis in Orgarnic Solvents, Polymer, 47, 5701 (2006) https://doi.org/10.1016/j.polymer.2006.06.011
  4. S. Thomas, W. Magnus, and R. Mikael, Dispersion Coating with Carboxylated and Cross-linked Styrene-butadiene Latices. 1. Effect of Some Polymer Characteristics on Film Properties, Progr. Org. Coatings, 51, 220 (2004) https://doi.org/10.1016/j.porgcoat.2004.07.015
  5. T. Mamiya, T. Katsurahara, and H. Oshikubo, Film Properties of Silicone Modified Non-aqueous Acrylic Polymer Dispersion, Progr. Org. Coatings, 45, 219 (2002) https://doi.org/10.1016/S0300-9440(01)00254-5
  6. S. A. Srinivasan, J. L. Hedrick, D. R. McKean, R. D. Miller, and J. G. Hilbom, Preparation of Thermally Labile PMMA Particles by Combined Non-aqueous Dispersion Polymerization and Chain Transfer, Polymer, 39, 1497 (1998) https://doi.org/10.1016/S0032-3861(97)00458-8
  7. R. Hu, V. L. Dimonie, E. D. Sudol, and M. S. EL-Aasser, Monodisperse Poly(butadiene/styrene) Particles by Dispersion Polymerization, J. Appl. Poly. Sci., 55, 1411 (1995) https://doi.org/10.1002/app.1995.070551006
  8. A. Christopher, K. Ober, and M. Hair, J. Appl. Poly. Sci., 25, 1395 (1987)
  9. C. M. Tseng, Y. Y. Lu, and M. S. EL-Aasser, and J. W. Vanderhoff, J. Appl. Poly. Sci., 24, 2995 (1986) https://doi.org/10.1002/pola.1986.080241126
  10. A. Samakande and P. C. Hartmann, M. Cloete, and R. D. Sanderson, Use of Acrylic Based Surfmers for the Preparation of Exfoliated Polystyrene-Clay Nanocomposites, Polym., 48, 1490 (2007) https://doi.org/10.1016/j.polymer.2006.07.072
  11. K. Barrett, Ed., Dispersion Polymerization in Oranic Media, Willey, New York (1975)
  12. R. Lambourne and T. A. Strivens, Paint and Surface Coatings., Woodhead, Cambridge England (1999)
  13. N. Carter, W. A. MacDonald, D. Pitman, and T. G. Ryan, High Temperature Non-aqueous Dispersion Polymerization of aromatic Main Chain Liquid Crystal Polymers Using Organo-Clay Stabilisation, Polymer, 40, 7233 (1999) https://doi.org/10.1016/S0032-3861(98)00672-7
  14. J. Stejskal, M. Spirkova, A. Riede, M. Helmstedt, P. Mokreva, and J. Prokes., Polyaniline Dispersions 8. The Control of Particle Morphology, Polymer, 40, 2487 (1999) https://doi.org/10.1016/S0032-3861(98)00478-9
  15. Z. Liu. and B. W. Brooks, Inverse Dispersion Polymerisation of Acrylic Acid Initiated by a Water-soluble Redox Pair: the Role of Drop mixing, Polymer, 40, 2181 (1999) https://doi.org/10.1016/S0032-3861(98)00458-3
  16. R. M. Siverstein, G. C. Bassler and T. C. Morill, Spectrometric Identification of Organic Compounds, John Wiley and Sons, New York (1981)
  17. M. M. Coleman, J. F. Graf, and P. C. Painter, Specific Interactions and the Miscibility of Polymer Blends, Technomic Publishing, Lancaster (1991)