DOI QR코드

DOI QR Code

강곡선 플레이트거더 복부판의 전단좌굴계수에 관한 연구

A Study on Elastic Shear Buckling Coefficients of Horizontally Curved Plate Girder Web Panels

  • 이두성 (동국대학교 산업기술연구원) ;
  • 이성철 (동국대학교 사회환경시스템공학과)
  • 투고 : 2007.12.18
  • 심사 : 2008.03.13
  • 발행 : 2008.05.31

초록

국내/외에서 설계되는 강곡선거더교 복부판의 전단강도는 복부판의 4변을 단순지지라는 가정 하에서 산정되는 탄성전단좌굴강도로 제안하고 있다(AASHTO Guide Specifications, 2003). 그러나, Lee et al.(1996, 1999)과 Bradford(1996)의 최근 연구에서 실제의 설계범위를 갖는 직선이나 곡선 복부판에서 어느 정도의 강성을 갖는 플랜지에 의해서 접하는 변의 경계조건은 단순지지 보다는 고정지지에 더 근접하며, 복부판의 형상비에 따라서는 AASHTO의 탄성좌굴강도가 60%이상 낮게 평가되고 있음을 발표하였다. 특히 강곡선복부판의 전단좌굴강도는 곡률의 영향으로 AASHTO Guide Specifications(2003)의 탄성전단좌굴강도보다 최대 38%이상 증가하고 있음이 Lee and Yoo(1999)의 연구에서 조사되었다. 본 논문에서는 선형좌굴해석을 이용하여 곡률과 경계조건이 동시에 고려된 강곡선 복부판의 전단좌굴계수를 합리적으로 추정할 수 있는 산정식을 제안하고자 한다.

In the design of horizontally curved plate girder web panels, it is required to evaluate accurately the elastic buckling strength under pure shear. Currently, elastic shear buckling coefficients of curved web panels stiffened by transverse intermediate stiffeners are determined by assuming conservatively that straight web panels without curvature are simply supported at the juncture between the flange and web. However, depending upon the geometry and the properties of the curved plate girder, the elastically restrained support may behave rather closer to a fixed support. The buckling strength of curved girder web is much greater (maximum 38%) than that of a straight girder calculated under the assumption that all four edges are simply supported in Lee and Yoo (1999). In the present study, a series of numerical analyses based on a 3D finite element modeling is carried out to investigate the effects of geometric parameters on both the boundary condition at the juncture and the horizontal curvature of web panel, and the resulting data are quantified in a simple design equation.

키워드

참고문헌

  1. 한국도로교통협회(2005) 도로교 설계기준
  2. AASHTO (2002) Standard Specifications for Highway Bridges, 17th ed. American Association of State Highway and Trans- portation Officials, Washington DC
  3. AASHTO (2003) AASHTO Guide Specifications for Horizontally Curved Steel Girder Highway Bridges, American Association of State Highway and Transportation Officials, Washington DC
  4. Batdorf, S.B., Stein, M., and Schildcrout, M. (1947) Critical shear stress of curved rectangular plates. NACA TN No.1342, National Advisory Committee for Aeronautics, Washington, D.C.
  5. Bradford, M.A. (1996) Improved shear strength of webs designed in accordance with the LRFD specifications. Engrg. J., Vol. 33, No. 3, pp. 95-100
  6. Mariani, N., Mozer, J.D., Dyme, C.L., and Culver, C.G. (1973) Transverse stiffener requirements for curved webs. J. Struct. Div., ASCE, Vol. 99, No. 4, pp. 757-771
  7. Nakai, H., S., Yoshikawa, N. Kitada, T., and Ohminami, R. (1981) A survey for web plates of horizontally curved girder bridges. Bridges and Found. Engrg., Japan, 15,38 (in Japanes)
  8. Stein, M. and Yeager, D.J. (1949) Critical shear stress of curved rectangular panel with a central stiffener. NACA TN No.1972, National Advisory Committee for Aeronautics, Washington, D.C.
  9. Lee, S.C., Davidson, J.S., and Yoo, C.H. (1996) Shear buckling coefficients of plate girder web panels. Comput. Struct., Vol. 59, No. 5, pp. 789-795 https://doi.org/10.1016/0045-7949(95)00325-8
  10. Lee, S.C. and Yoo, C.H. (1999) Strength of curved I-girder web Panels under pure shear. J. Struct. Engrg., ASCE, Vol. 125, No. 8, pp. 847-853 https://doi.org/10.1061/(ASCE)0733-9445(1999)125:8(847)
  11. Galambos, T.V. (1998) Guide to Stability Design Criteria for Metal Structures, 5th Ed., Structure Stability Research Council, McGraw-Hill, New York, NY