DOI QR코드

DOI QR Code

농지-임야에서 발생하는 지표미생물 유출 특성

Discharge Characteristics of Indicator Microorganisms from Agricultural-Forestry Watersheds

  • 김건하 (한남대학교 공과대학 토목환경공학과)
  • 투고 : 2007.10.17
  • 심사 : 2007.11.17
  • 발행 : 2008.01.31

초록

농지-임야유역의 비점원으로부터 발생하는 미생물학적 오염물질 부하량을 추정하기 위하여, 농지와 임야가 혼합된 3개 시험유역에서 동일한 2개 강우사상에 대한 지표미생물 유출 특성을 조사하였으며, 지표미생물항목은 대장균군(total coliform: TC), 분원성 대장균(Fecal coliform: FC), 대장균 (Escherichia coli: EC), 분원성 연쇄상구균(Fecal streptococcus: FS)이었다. 농지-임야 유역의 강우시 유량변화에 따라 토사유실로 인하여 부유물질 농도가 상당히 증가하였다. 지표미생물 농도는 유량변화와 상당히 밀접한 관계를 보였다. 대부분 오염되지 않은 임야로 구성되어 있는 첫번째 유역의 강우유출수 TC EMC(Event Mean Concentration)는 $5.3{\times}10^3CFU/100ml$이었으며, FC EMC는$1.4{\times}10^3CFU/100ml$, EC EMC는 $1.1{\times}10^3CFU/100ml$, FS EMC는 $3.9{\times}10^2CFU/100ml$이었다. 임야유역과 농지유역이 혼합되어 있는 제 2 유역의 지표미생물에 대한 EMC는 TC EMC가 $1.7{\times}10^5CFU/100ml$, FC EMC가 $8.5{\times}10^4CFU/100ml$, EC EMC가 $8.9{\times}10^4CFU/100ml$, FS EMC가 $3.4{\times}10^4CFU/100ml$로 나타났다. 농지와 임야가 혼재되어 있으나, 유역면적이 큰 제 3 시험유역의 지표미생물에 대한 EMC는 TC EMC가 $1.9{\times}10^5CFU/100ml$, FC EMC가 $9.6{\times}10^4CFU/100ml$, EC EMC가 $7.0{\times}10^4CFU/100ml$, FS EMC가 $5.1{\times}10^4CFU/100ml$로 나타났다.

To estimate microbial contaminant loading discharged from diffuse sources, rainfall runoff of six rainfall events were monitored at three study watersheds of forestry and agricultural land use. Monitored indicator microorganism constituents were total coliform (TC), fecal coliform (FC), Escherichia coli (EC), and fecal streptococcus (FS). Soil loss during elevated flow rate caused higher suspended solid concentrations. Indicator microorganism concentrations were closely related with flow rate. TC event mean concentration (EMC) from unpolluted forestry was $5.3{\times}10^3CFU/100ml$, FC EMC was $1.4{\times}10^3CFU/100ml$, EC EMC was $1.1{\times}10^3CFU/100ml$, and FS EMC was $2.9{\times}10^2CFU/100ml$. From a watershed with agricultural-forestry land use, TC EMC was $1.7{\times}10^5CFU/100ml$, FC EMC was $8.5{\times}10^4CFU/100ml$, EC EMC was $8.9{\times}10^4CFU/100ml$, and FS EMC was $3.4{\times}10^4CFU/100ml$. Mixed land use of agricultural-forestry with bigger area, TC EMC was $1.9{\times}10^5CFU/100ml$, FC EMC was $9.6{\times}10^4CFU/100ml$, EC EMC was $7.0{\times}10^4CFU/100ml$, and FS EMC was $5.1{\times}10^4CFU/100ml$.

키워드

참고문헌

  1. APHA, AWWA, and WEF (1998) Standard Methods for the Examination of Water and Wastewater, 20th ed. APHA
  2. Baudisova, D. (1997) Evaluation of Escherichia coli as the main indicator of of faecal pollution. Water Sci. Technol., Vol. 35, No. 11-12, pp. 333-336 https://doi.org/10.1016/S0273-1223(97)00281-3
  3. Borst, M. and Selvakumar, A. (2003) Particle-associated microorganisms in stormwater runoff. Water Res., Vol. 37, No. 1, pp. 215-223 https://doi.org/10.1016/S0043-1354(02)00244-0
  4. Brezonik, P.L. and Stadelmann, T.H. (2002) Analysis and predictive models of stormwater runoff volumes, loads, and pollutant concentrations from watersheds in the Twin Cities metropolitan area, Minnesota, USA. Water Res., Vol. 36, No. 7, pp. 1743-1757 https://doi.org/10.1016/S0043-1354(01)00375-X
  5. Choi, E. (1991) Research on estimation of unit generation rate of nutrients. Seoul: Koean Reseach Council of Environmental Science.(in Korean)
  6. Doran, J.W., Schepers, J.S., and Swanson, N.P. (1981) Chemical and bacteriological quality of pasture runoff. J. of Soil and Water Conserv., Vol. 36, No. 3, pp. 166-171
  7. Ellis, J.B. and Yu, W. (1995) Bacteriology of urban runoff - the combined sewer as a bacterial reactor and generator. Water Sci. Technol., Vol. 31, No. 7, pp. 303-310
  8. Feachem, R. (1975) Improved role for fecal coliform to fecal streptococci ratios in differentiation between human and non-human pollution sources. Water Res., Vol. 9, No. 7, pp. 689-690 https://doi.org/10.1016/0043-1354(75)90178-5
  9. Jagals, P., Grabow, W.O.K., and Devilliers, J.C. (1995) Evaluation of indicators for assessment of human and animal fecal pollution of surface run-off. Water Sci. Technol., Vol. 31, No. 5-6, pp. 235-241
  10. Kim, S., Hong, S., Kim, G., Sohn, J., and Choi, E. (2007) Source identification and characterization of the non-biodegradable organics in korean reservoirs. J. of Environ. Manage., doi:10.1016/j.jenvman.2007.05.011
  11. Murray, K.S., Fisher, L.E., Therrien, J., George, B., and Gillespie, J. (2001) Assessment and use of indicator bacteria to determine sources of pollution to an urban river. J. of Great Lakes Res., Vol. 27, No. 2, pp. 220-229 https://doi.org/10.1016/S0380-1330(01)70635-1
  12. Oshiro, R. and Fujioka, R. (1995) Sand, soil, and pigeon droppings- sources of indicator bacteria in the waters of hanauma bay, oahu, hawaii. Water Sci. Technol., Vol. 31, No. 5-6, pp. 251-254
  13. Schillinger, J.E. and Gannon, J.J. (1985) Bacterial adsorption and suspended particles in urban stormwater. J. Water Pollut. Contr. Fed., Vol. 57, No. 5, pp. 384-389
  14. Thomann, R.V. and Mueller, J.A. (1987) Principles of surface water quality modeling and control. New York, NY: Harper Collins Publishers
  15. U.S. Environmental Protection Agency (2001) Protocol for developing pathogen TMDLs. Washington, DC.: United States Environmental Protection Agency