DOI QR코드

DOI QR Code

격자기반 운동파 강우유출모형 KIMSTORM의 개선(I) - 이론 및 모형 -

A Modified grid-based KIneMatic wave STOrm Runoff Model (ModKIMSTORM) (I) - Theory and Model -

  • 정인균 (건국대학교 대학원 사회환경시스템공학과) ;
  • 이미선 (건국대학교 대학원 지역건설환경공학과) ;
  • 박종윤 (건국대학교 대학원 사회환경시스템공학과) ;
  • 김성준 (건국대학교 생명환경과학대학 사회환경시스템공학과)
  • 투고 : 2008.07.28
  • 심사 : 2008.09.08
  • 발행 : 2008.11.30

초록

격자기반 운동파 강우유출모형 KIMSTORM(grid-based KIneMatic wave STOrm Runoff Model)은 유역의 지표흐름, 지표하흐름 및 하천흐름의 시간적 변화와 공간적 분포를 모의할 수 있다. 본 모형은 유닉스 운영체제의 C++언어로 개발되었으며, 각 셀에서의 흐름을 모의하기 위하여 단방향흐름 알고리즘과 격자기반 수문학적 물수지요소를 채택하고 있으나 운영에 몇몇 제약사항이 있다. 본 연구에서는 기존모형을 개선하고자 하였으며, MS Windows 운영체제에서 실행 가능하도록 FORTRAN 90 언어를 이용하여 ModKIMSTORM을 개발하였다. 기존모형에 비해 개선된 주요사항으로, 물리적 기반의 침투기법인 GAML(Green-Ampt & Mein-Larson) 침투모형 추가, 격자 유출심과 Manning 조도계수에 의한 논에서의 지표유출 제어, 지표격자의 기저유출 요소 추가, 공간강우와 지점강우의 처리, 전 후 처리부문 개발, 5개 평가항목(피어슨의 결정계수 $R^2$, Nash & Sutcliffe 모형효율 E, 유출용적 편차 $D_v$, 첨두유출의 상대오차 $EQ_p$, 첨두시간의 절대오차 $ET_p$)을 이용한 모의결과의 자동 평가 기능을 개발하였다. 추가적으로, 모형의 계산효율을 향상시키고 지표격자의 기저유출을 하천격자로 이송하기 위하여 쉘정렬 알고리즘을 채택하였다. 모형의 입력자료는 ESRI ArcInfo W/S 또는 ArcView와 같은 GIS 소프트웨어 및 MS Excel을 이용하여 간단히 구축할 수 있으며, 모의결과의 공간적 분포를 확인할 수 있는 토양수분, 지표유출, 유출심 및 유속분포도는 BSQ, ESRI ASCII Grid, ESRI Binary Grid 및 IDRISI Raster 형식으로 출력할 수 있도록 개선하였다.

The grid-based KIneMatic wave STOrm Runoff Model (KIMSTORM) by Kim (1998) predicts the temporal variation and spatial distribution of overland flow, subsurface flow and stream flow in a watershed. The model programmed with C++ language on Unix operating system adopts single flowpath algorithm for water balance simulation of flow at each grid element. In this study, we attempted to improve the model by converting the code into FORTRAN 90 on MS Windows operating system and named as ModKIMSTORM. The improved functions are the addition of GAML (Green-Ampt & Mein-Larson) infiltration model, control of paddy runoff rate by flow depth and Manning's roughness coefficient, addition of baseflow layer, treatment of both spatial and point rainfall data, development of the pre- and post-processor, and development of automatic model evaluation function using five evaluation criteria (Pearson's coefficient of determination, Nash and Sutcliffe model efficiency, the deviation of runoff volume, relative error of the peak runoff rate, and absolute error of the time to peak runoff). The modified model adopts Shell Sort algorithm to enhance the computational performance. Input data formats are accepted as raster and MS Excel, and model outputs viz. soil moisture, discharge, flow depth and velocity are generated as BSQ, ASCII grid, binary grid and raster formats.

키워드

참고문헌

  1. 김대식, 정하우, 김성준, 최진용(1995) 소유역 지표유출의 공간적 해석을 위한 지리전보시스템 응용모형(II) -격자 물수지모형을 위한 GIS 응용모형 개발-, 한국농공학회지, 한국농공학회, 제37권, 제5호, pp. 35-42.
  2. 김상현, 손광익, 한건연(1996) Tile Drain의 영향과 GIS를 연계한 농경지 유역에 대한 수문학적 모의, 한국수자원학회논문집, 한국수자원학회, 제29권, 제6호, pp. 203-216.
  3. 김상현(1997) 인공배수유역에서의 TOPMODEL의 적용, 한국수자원학회논문집, 한국수자원학회, 제30권, 제5호, pp. 539-548.
  4. 김상현(1998) 확장 TOPMODEL의 영역화 민감도 분석, 한국수자원학회논문집, 한국수자원학회, 제31권, 제6호, pp. 741-756.
  5. 김상현, 이지영(1999) 개선된 지형지수 산정 알고리즘의 적용에 관한 연구, 한국수자원학회논문집, 한국수자원학회, 제32권, 제4호, pp. 489-500.
  6. 김성준(1998) 격자기반의 운동파 강우유출모형 개발(I) -이론 및 모형-, 한국수자원학회논문집, 한국수자원학회, 제31권, 제3호, pp. 303-308.
  7. 김성준(1998) 격자기반의 운동파 강우유출모형 개발(II) -적용 예(연천댐유역을 대상으로)-, 한국수자원학회논문집, 한국수자원학회, 제31권, 제3호, pp. 309-316.
  8. 김성준(2001) 분포형 수문.수질 모델링의 최근 동향과 활용방안, 한국수자원학회지, 한국수자원학회, 제34권, 제6호, pp. 33-45.
  9. 김진택(1995) 농업비점원 오염모형을 위한 지리정보시스템 호환모형의 개발 및 적용, 박사학위논문, 서울대학교.
  10. 박진혁, 강부식(2006) 댐유역 홍수예측을 위한 GIS기반의 분포형모형과 집중형모형의 유출해석 비교, 한국지리정보학회지, 한국지리정보학회, 제9권, 제3호, pp. 171-182.
  11. 배덕효, 김진훈, 권원태(2000) TOPMODEL의 단일유역 홍수예보능에 관한 연구, 한국수자원학회논문집, 한국수자원학회, 제 33권, 제1호, pp. 87-98.
  12. 신철균, 조효섭, 정관수, 김재한(2004) 저류함수기법을 이용한 격자기반의 강우-유출 모형 개발, 한국수자원학회논문집, 한국수자원학회, 제37권, 제11호, pp. 969-978.
  13. 이창희, 한건연, 김지성(2006) 비정형격자기반 도시침수해석모형개발, 대한토목학회논문집, 대한토목학회, 제26권, 제5B호, pp. 511-517.
  14. 정선희, 김상현(1999) TOPMODEL 투수량계수 감소함수 일반화 과정의 적용에 관한 연구, 한국수자원학회논문집, 한국수자원학회, 제32권, 제6호, pp. 637-648.
  15. 조홍제, 조인률, 김정식(1997) TOPMODEL을 이용한 강우-유출해석에 관한 연구, 한국수자원학회논문집, 한국수자원학회, 제30권, 제5호, pp. 515-526.
  16. 조홍제, 조인률(1998) 분포형 유출모형을 이용한 홍수유출해석, 한국수자원학회논문집, 한국수자원학회, 제31권, 제2호, pp. 199-208.
  17. 최진용(1996) 지리정보시스템을 이용한 장기유출모형에 관한 연구, 박사학위논문, 서울대학교.
  18. 홍준범, 김병식, 윤석영(2006) VfloTM 모형을 이용한 물리기반의 분포형 수문모형의 정확성 평가, 대한토목학회논문집, 대한토목학회, 제26권, 제6B호, pp. 613-622.
  19. Abbott, M.B., Bathurst, J.C., Cunge, J.A., O'Connell, P.E., and Rasmussen, J. (1986a) An introduction to the european hydrological system - systeme hydrologique europeen, 'SHE', 1: History and philosophy of a physically-based, distributed modelling system. Journal of Hydrology, Vol. 87, pp. 45-59. https://doi.org/10.1016/0022-1694(86)90114-9
  20. Abbott, M.B., Bathurst, J.C., Cunge, J.A., O'Connell, P.E., and Rasmussen, J. (1986b) An introduction to the european hydrological system - systeme hydrologique europeen, 'she', 2: structure of a physically-based, distributed modelling system. Journal of Hydrology, Vol. 87, pp. 61-77. https://doi.org/10.1016/0022-1694(86)90115-0
  21. ASCE Task Committee on Definition of Criteria for Evaluation of Watershed Models (1993) Criteria for evaluation of watershed models. Journal of Irrigation and Drain Engineering, Vol. 119, No. 3, pp. 429-441. https://doi.org/10.1061/(ASCE)0733-9437(1993)119:3(429)
  22. Bathurst, J.C. and O'Connell, P.E. (1992) The future of distributed modelling: The Système Hydrologique Européen. Hydrological Processes, Vol. 6, pp. 265-277. https://doi.org/10.1002/hyp.3360060304
  23. Bathurst, J.C. (1986a) Physically-based distributed modelling of an upland catchment using the Systeme Hydrologique Europeen. Journal of Hydrology, Vol. 87, pp. 79-102. https://doi.org/10.1016/0022-1694(86)90116-2
  24. Bathurst, J.C. (1986b) Sensitivity analysis of the Systeme Hydrologique Europeen for an upland catchment. Journal of Hydrology, Vol. 87, pp. 103-121. https://doi.org/10.1016/0022-1694(86)90117-4
  25. Beasley, D.B., Huggins, L.F., and Monke, E.J. (1980) ANSWERS: A model for watershed planning. Transactions of the ASAE, Vol. 23, No. 4, pp. 938-944. https://doi.org/10.13031/2013.34692
  26. Bell, V.A., Kay, A.L., Jones, R.G., and Moore, R.J. (2007) Development of a high resolution grid-based river flow model for use with regional climate model output. Hydrology and Earth System Sciences, Vol. 11, pp. 532-549. https://doi.org/10.5194/hess-11-532-2007
  27. Beven, K.J. and Kirkby, M.J. (1979) A physically based variable contributing area model of basin hydrology. Hydrological Sciences Bulletin, Vol. 24, No. 1, pp. 43-69. https://doi.org/10.1080/02626667909491834
  28. Beven, K.J. (1982) On subsurface stormflow: Predictions with simple kinematic theory for saturated and unsaturated flows. Water Resources Research, Vol. 18, No. 6, pp. 1627-1633. https://doi.org/10.1029/WR018i006p01627
  29. Beven, K.J. and O'Connell, P.E. (1982) On the role of physicallybased distributed models in hydrology. Report No. 81, Institute of Hydrology, Wallingford, UK. Beven, K.J. (1985) Distributed models, Hydrological forecasting. M.G. Anderson and T.P. Burt, eds. Wiley, Chichester, pp. 405-435.
  30. Beven, K.J., Calver, A., and Morris, E.M. (1987) The Institute of Hydrology Distributed Model. Report No. 98, Institute of Hydrology, Wallingford, UK.
  31. Beven, K.J. and Binley, A.M. (1992) The future role of distributed models: Model calibration and predictive uncertainty. Hydrological Processes, Vol. 6, pp. 279-298. https://doi.org/10.1002/hyp.3360060305
  32. Beven, K.J. (1996) A discussion of distributed modelling: Chapter 13A, Distributed Hydrological Modelling. J.C. Refsgaard and M.B. Abbott, eds., Kluwer, Dordrecht, pp. 255-278.
  33. Cabral, M.C., Bras, R.L., Tarboton, D., and Entekhabi, D. (1990) A distributed physically-based rainfall-runoff model incorporating topography for real-time flood forecasting. The Ralph M. Parsons Laboratory technical Report No. 332, MIT. Department of Civil Engineering, Cambridge, MA.
  34. Calver, A. (1988) Calibration, sensitivity and validation of a physically based rainfall-runoff model. Journal of Hydrology, Vol. 103, pp. 103-115. https://doi.org/10.1016/0022-1694(88)90008-X
  35. Calver, A. and Wood, W.L. (1995) The Institute of Hydrology Distributed Model. Computer Models of Watershed Hydrology, V. P. Singh, ed., Water Resources Publications, LLC, Highlands Ranch, Colorado, pp. 595-626.
  36. Downer, C.W. and Ogden, F.L. (2002) GSSHA-User's Manual, Gridded Surface Subsurface Hydrologic Analysis. Version 1.43 for WMS 6.1. ERDC Technical Report, Engineer Research and Development Center, Vicksburg, Mississippi.
  37. Foster, G.R., Huggins, L.F., and Meyer, L.D. (1984) A laboratory study of rill hydraulics: I. Velocity relationships. Transactions of the ASAE Vol. 27, No. 3, pp. 790-796. https://doi.org/10.13031/2013.32873
  38. Freeze, R.A. and Harlan, R.L. (1969) Blueprint for a physicallybased digitally-simulated hydrologic response model. Journal of Hydrology, Vol. 9, pp. 237-258. https://doi.org/10.1016/0022-1694(69)90020-1
  39. Grayson, R.B., Moore, I.D., and McMahon, T.A. (1992a) Physically based hydrological modeling. 1. A terrain-based model for investigative purposes. Water Resources Research, Vol. 28, No. 10, pp. 2639-2658. https://doi.org/10.1029/92WR01258
  40. Grayson, R.B., Moore, I.D., and McMahon, T.A. (1992b) Physically based hydrological modeling. 2. Is the concept realistic? Water Resources Research, Vol. 28, No. 10, pp. 2659-2666. https://doi.org/10.1029/92WR01259
  41. Grayson, R.B., Blöschl, G., and Moore, I.D. (1995) Distributed parameter hydrologic modeling using vector elevation data: THALES and TAPES-C. Computer Models of Watershed Hydrology, V.P. Singh, ed., Water Resources Publications, LLC, Highlands Ranch, Colorado, pp. 669-696.
  42. Grayson, R.B. and Blöschl, G. (2000) Spatial Patterns in Catchment Hydrology. Cambridge University Press, New York, NY.
  43. Green, W.H. and Ampt, G.A. (1911) Studies in Soil Physics, I: The Flow of Air and Water Through Soils. Journal of Agricultural Sciences, Vol. 4, pp. 1-24. https://doi.org/10.1017/S0021859600001441
  44. Holtan, H.N. (1961) A concept for infiltration estimates in watershed engineering. ARS 41-51, US Department of Agriculture, Washington, DC.
  45. Huggins, L.F. and Monke, E.J. (1966) The mathematical simulation of the hydrology of small watersheds, Technical report, Water Resources Research Center, No. 1, Purdue University, West Lafayette, Indiana.
  46. Huggins, L.F. and Monke, E.J. (1968) A mathematical model for simulating the hydrologic response of a watershed. Water Resources Research, Vol. 4, No. 3, pp. 529-539. https://doi.org/10.1029/WR004i003p00529
  47. Jain, M.K., Kothyari, U.C., and Ranga Raju, K.G. (2004) A GIS based distributed rainfall-Runoff model. Journal of Hydrology, Vol. 299, pp. 107-135. https://doi.org/10.1016/j.jhydrol.2004.04.024
  48. Jia, Y., Ni, G., Kawahara, Y., and Suetsugi, T. (2001) Development of WEP model and its. application to an urban watershed. Hydrological Processes, Vol. 15, pp. 2175-2194. https://doi.org/10.1002/hyp.275
  49. Jinkang, D., Shunping X., Youpeng, X., Chong-yu, X., and Singh, V.P. (2007) Development and testing of a simple physicallybased distributed rainfall-runoff model for storm runoff simulation in humid forested basins. Journal of Hydrology, Vol. 336, pp. 334-346. https://doi.org/10.1016/j.jhydrol.2007.01.015
  50. Julien, P.Y., Saghafian, B., and Ogden, F.L. (1995) Raster based hydrological modeling of spatially-varied surface runoff. Water Resources Bulletin, Vol. 31, No. 3, pp. 523-536. https://doi.org/10.1111/j.1752-1688.1995.tb04039.x
  51. Kim, S.J. and Steenhuis, T.S. (1998) Grid-Based Variable Source Area Storm Runoff Model, Hydroinformatics 98. V. Babovic and L.C. Larson, eds., Danish Hydraulic Institute, Netherlands, pp. 1383-1390.
  52. Kim, S.J. and Steenhuis, T.S. (2001) GRISTORM: Grid-based variable source area storm runoff model. Transactions of the ASAE, Vol. 44, No. 4, pp. 863-875.
  53. Kim, S.J., Kwon, H.J., Jung, I.K., and Park, G.A. (2003) A comparative study on grid-based storm runoff prediction using Thiessen and spatially distributed rainfall. PWEE, Vol. 1, No. 3, pp. 149-155.
  54. King, K.W., Arnold, J.G., and Bingner, R.L. (1999) Comparison of Green-Ampt and curve number methods on Goodwin creek watershed using SWAT. Transactions of the ASAE, Vol. 42, No. 4, pp. 919-925. https://doi.org/10.13031/2013.13272
  55. Kojiri, T., Tokai, A., and Kinai, Y. (1998) Assessment of river basin environment though. simulation with water quality and quantity. Annuals of Disaster Prevention, Research Institute, Kyoto University, Vol. 41, No. B-2, pp. 119-134.
  56. Kojiri, T. (2006) Hydrological River Basin Environment Assessment Model (Hydro-BEAM). Watershed Models, V.P. Singh and D.K. Frevert eds., CRC Press, Taylor & Francis Books, Inc., New York, pp. 613-626.
  57. Marchant, P.G., Hively, W.D., and Steenhuis, T.S. (2006) Distributed hydrological modelling of total dissolved phosphorus transport in an agricultural landscape, part I: distributed runoff generation. Hydrology and Earth System Sciences, Vol. 10, pp. 245-261. https://doi.org/10.5194/hess-10-245-2006
  58. Mein, R.G. and Larson, C.L. (1973) Modeling infiltration during a steady rain. Water Resources Research, Vol. 9, No. 2, pp. 384-394. https://doi.org/10.1029/WR009i002p00384
  59. Moore, I.D. and Burch, G.J. (1986) Sediment transport capacity of sheet and rill flow: Application of unit stream power theory. Water Resources Research, Vol. 22, No. 8, pp. 1350-1360. https://doi.org/10.1029/WR022i008p01350
  60. Moore, I.D. and Foster, G.R. (1990) Hydraulics and overland flow. Process Studies in Hillslope Hydrology, M.G. Anderson and T.P. Burt, eds., John Wiley, New York, N.Y., pp. 215-254.
  61. Nash, J.E. and Sutcliffe, J.V. (1970) River flow forecasting through conceptual models, Part I - A discussion of principles. Journal of Hydrology, Vol. 10, pp. 283-290.
  62. O'Loughlin, E.M. (1986) Prediction of surface saturation zones in natural catchments by topographic analysis. Water Resources Research, Vol. 22, No. 5, pp. 794-804. https://doi.org/10.1029/WR022i005p00794
  63. O'Loughlin, E.M. (1990) Modelling soil water status in complex terrain. Agricultural and Forest Meteorology, Vol. 50, pp. 23-38. https://doi.org/10.1016/0168-1923(90)90136-T
  64. Overton, D.E. (1964) Mathematical refinement of an infiltration equation for watershed engineering. ARS 41-49, US Department of Agricultural Services, Wasington, DC.
  65. Refsgaard, J.C. and Storm, B. (1995) MIKE SHE. Computer Models of Watershed Hydrology, V. P. Singh, ed., Water Resources Publications, LLC, Highlands Ranch, Colorado, pp. 809-846.
  66. Shell, D.L. (1959) A high-speed sorting procedure. Communication of the ACM, Vol. 2, No. 7, pp. 30-32. https://doi.org/10.1145/368370.368387
  67. Shulits, S. (1941) Rational equation of river-bed profile, Transactions AGU, Vol. 22, pp. 622-631. https://doi.org/10.1029/TR022i003p00622
  68. Sloan, P.G. and Moore, I.D. (1984) Modelling subsurface stormflow on steeply sloping forested watersheds. Water Resources Research, Vol. 20, No. 15, pp. 1815-1822. https://doi.org/10.1029/WR020i012p01815
  69. Yoo, D.H. (2002) Numerical model of surface runoff, infiltration, river discharge and groundwater flow - SIRG, Mathematical Models of Small Watershed Hydrology and Applications, V.P. Singh and D.K. Frevert, eds., Water Resources Publications, LLC, Highlands Ranch, Colorado, pp. 167-182.
  70. Young, R.A., Onstad, C.A., Bosch, D.D., and Anderson, W.P. (1989) AGNPS: a nonpoint-source pollution model for evaluating agricultural watersheds. Journal of Soil and Water Conservation, Vol. 44, No. 2, pp. 168-173.
  71. Vieux, B.E. and Vieux, J.E. (2002) VfloTM: a real-time distributed hydrologic model. Proceedings of the Second Federal Interagency Hydrologic Modeling Conference 2002, Las Vegas, NV.
  72. Wang, M. and Hjelmfelt, A.T. (1998) DEM based overland flow routing model. Journal of Hydrologic Engineering, Vol. 3, No. 1, pp. 1-8. https://doi.org/10.1061/(ASCE)1084-0699(1998)3:1(1)
  73. Woolhiser, D.A., Smith, R.E., and Goodrich, D.C. (1990) KINEROS, A kinematic runoff and erosion model: documentation and user manual. Report No. ARS-77, US Department of Agriculture, Agricultural Research Services.