DOI QR코드

DOI QR Code

국내유역의 하천분류 및 하도진화모형 적용

Classification of Streams and Application of Channel Evolution Model in Korea

  • 임창수 (청운대학교 철도행정토목학과) ;
  • 이준호 (국토해양부 영산강홍수통제소) ;
  • 정재욱 ((주)진영엔지니어링) ;
  • 윤세의 (경기대학교 공과대학 토목환경공학부)
  • 투고 : 2007.07.05
  • 심사 : 2008.09.03
  • 발행 : 2008.11.30

초록

본 연구에서는 금강유역의 제1지류인 지천과 섬진강유역의 제1지류인 요천에 대해서 하천분류를 실시하고 하도진화모형의 적용성을 검토하였다. Rosgen과 한국건설기술연구원에서 제안된 하천분류방법을 적용하여 하천분류를 수행하였고, Schumm 등 (1984)에 의해서 연구 제안된 하도진화모형 결과를 바탕으로 지천과 요천 연구구간의 하도진화단계를 비교 검토하였다. Rosgen 하천분류 적용결과에 따르면 지천과 요천의 경우, 전체적으로 자갈이 혼재하는 산지하천의 특성을 보이고 있다. 하도진화모형 적용결과 지천 및 요천의 현재 하천상태는 Schumm 등 (1984)에 의해서 제시된 하도진화과정에 따르면 유사공급과 유사이송능력 사이에 평형이 발생하여 동적 평형상태가 이루어지고 있다. 본 연구의 결과는 치수사업의 계획, 하천복원 사업, 바람직한 하도계획 등에 필요한 기초자료를 제공할 것으로 생각된다.

In this study, classification of streams was conducted for Ji Stream, a tributary to the Geum River and Yo Stream, a tributary to the Seomjin River, and in addition, channel evolution model to the same streams was applied. The classification approaches suggested by Rosgen and Korea Institute of Construction Technology (KICT) were conducted. The channel evolution model suggested by Schumm et al. (1984) was applied. Based on the application results of Rosgen approach, Ji Stream and Yo stream show the characteristics of mountainous stream with pebbles. The application results of channel evolution model indicated that the current condition of Ji Stream and Yo Stream is a state of equilibrium, balancing the sediment supply and sediment transport capacity. The results of this study can be used as a fundamental data for water control project, river restoration and appropriate channel planning.

키워드

참고문헌

  1. 양희경(2001) 지형 및 인위적 변수에 의한 산지 하천의 분류-경기도의 수동천, 수입천, 조종천 및 가평천을 사례로. 박사학위논문, 서울대학교, pp. 21-40.
  2. 건설교통부(2001) 자연 친화적 하천정비기법 개발 보고서, 한국건설기술연구원, 574p.
  3. Barg, L. (2002) Assessment of fluvial geomorphology in relation to hazards from riverine erosion and landslides in the third branch of the White River watershed, Central Vermont. Prepared for Vermont Geological Survey.
  4. Bledsoe, B.P., Watson, C.C., and Biedenharn, D.S. (2002) Quantification of incised channel evolution and equilibrium. Journal of American Water Resources Association, Vol. 38, No. 3, pp. 861-870. https://doi.org/10.1111/j.1752-1688.2002.tb01002.x
  5. Brownlie, W.R. (1981) Prediction of flow depth and sediment discharge in open channels. Report No. KH-R-43A, W.M. Keck Laboratory, California Institute of Technology, Pasadena, California.
  6. Davis, W.M. (1902) Baselevel, grade, and peneplain. Journal of Geology, Vol. 10, pp. 77-111. https://doi.org/10.1086/620982
  7. Emerson, J.W. (1971) Channelization: A case study. Science, Vol. 172, pp. 325-326.
  8. Harvey, M.D. and Watson, C.C. (1986) Fluvial processes and morphological thresholds in incised channel restoration. Water Resources Bulletin, Vol. 3, pp. 359-368.
  9. Horton, R.E. (1945) Erosional development of streams and their drainage basins: hydrological approach to quantitative morphology. Bulletin of the Geological Society of America, Vol. 56, pp. 275-370. https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2
  10. Ireland, H.A., Sharpe, C.F., and Eargle, D.H. (1939) Principles of gully erosion in the piedmont of South Carolina. U.S. Department of Agricultural Technical Bulletin 633, 142 pp.
  11. Keller, E.A. (1972) Development of alluvial stream channels: A five-stage model. Bulletin of the Geological Society of America, Vol. 83, pp. 1531-1536. https://doi.org/10.1130/0016-7606(1972)83[1531:DOASCA]2.0.CO;2
  12. King County, Dept of Natural Resources and Parks. (2003) Channel migration zones, in Best Available Science: A review of literature and assessment of the proposed critical areas, clearing and grading, and stormwater ordinances, Public Review Draft.
  13. Leopold, L.B. and Wolman, M.G. (1957) River channel patternsbraided, meandering and straight. Professional Paper, United States Geological Survey, 282B, pp. 39-85.
  14. Liebault F. and Piegay, H. (2002) Causes of 20th century channel narrowing in mountain and piedmont rivers of southeastern France. Earth Surface Processes and Landforms, Vol. 27, pp. 425-444. https://doi.org/10.1002/esp.328
  15. Rosgen, D.L. (1994) A classification of natural rivers. CATENA, Vol. 22, pp. 169-199. https://doi.org/10.1016/0341-8162(94)90001-9
  16. Schumm, S.A. and Hadley, R.F. (1957) Arroyos and the semiarid cycle of erosion. American Journal of Sciences, Vol. 225, pp. 161-174.
  17. Schumm, S.A. (1963) Sinuosity of alluvial rivers on the Great Plains. Bulletin of the Geological Society of America, Vol. 74, pp. 1089-1100. https://doi.org/10.1130/0016-7606(1963)74[1089:SOAROT]2.0.CO;2
  18. Schumm, S.A., Harvey, M.D., and Watson, C.C. (1984) Incised channels: Morphology, dynamics and control. Water Resources Publications, Littleton, Colorado. Simon, A. and Hupp, C.R. (1986a) Channel evolution in modified Tennessee channels. Federal Interagency Sedimentation Conference. 4th, Las Vegas, Nevada 1986 Proceedings, Vol. 2, pp. 5-71 to 5-82.
  19. Strahler, A.N. (1952) Hypsometric (area-altitude) analysis of erosional topography. Bulletin of the Geological Society of America, Vol. 63, pp. 1117-1142. https://doi.org/10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2
  20. Simon, A. (1989) A model of channel response in disturbed alluvial channels. Earth Surface Processes and Landforms, Vol. 14, pp. 11-26. https://doi.org/10.1002/esp.3290140103
  21. Underwood, K.L. (2002) Estimating of percent imperviousness in the Lewis Creek watershed. Draft, Prepared for Lewis Creek Association.
  22. U.S. Army Corps of Engineers (2000) Channel Forming Discharge. ERDC/CHL CHETN-VII-5, pp. 2-6.