Abstract
Response surface methodology (RSM) was used for the analysis and optimization of the production process of strawberry Kochujang. Experiments were carried out according to a central composite design, selecting strawberry puree content and red pepper powder content as independent variables and soluble solids content, moisture content, water activity, color characteristics ($L^*-$, $a^*-$, and $b^*$-values) as response variables. The polynomial models developed by RSM were highly effective for describing the relationships between the study factors and the responses. Kochujang containing a higher amount of red pepper powder had a higher soluble solids content; on the contrary, soluble solids content decreased with the increase in the strawberry puree content in the sample. Moisture content increased with increased strawberry puree content but decreased with increased red pepper powder content. Water activity increased with the increase in strawberry puree content in the sample but was less affected by the amount of red pepper powder content. Decreases in $L^*$-values with increasing amount of red pepper powder were noted. $a^*$-values decreased with the increases in red pepper powder content but increased with the increase in strawberry puree content in the Kochujang formulation. $b^*$-values decreased with the increases in red pepper powder content but was less affected by the strawberry puree content. Overall optimization, conducted by overlaying the contour plots under investigation, was able to point out an optimal range of the independent variables within which the six responses were simultaneously optimized. The point chosen as representative of this optimal area corresponded to strawberry puree content=14.36% and red pepper powder content=11.33%, conditions under which the model predicted soluble solids content=$59.31^{\circ}Brix$, moisture content=45.30% (w.b.), water activity=0.758, $L^*$-value=24.81, $a^*$-value=7.250, and $b^*$-value=10.19.