DOI QR코드

DOI QR Code

판별분석을 이용한 한강권역 농업용 하천수의 수질등급모형

Water Quality Level Model Using the Discriminant Analysis for the Small Streams of Rural Area in the Han River Watersheds

  • 최철만 (농촌진흥청 농업과학기술원 환경생태과) ;
  • 이종식 (농촌진흥청 농업과학기술원 환경생태과) ;
  • 조남준 (농촌진흥청 농업과학기술원 환경생태과) ;
  • 류희용 (농촌진흥청 농업과학기술원 환경생태과) ;
  • 박성진 (농촌진흥청 농업과학기술원 환경생태과) ;
  • 김진호 (농촌진흥청 농업과학기술원 환경생태과) ;
  • 윤순강 (농촌진흥청 농업과학기술원 환경생태과) ;
  • 이정택 (농촌진흥청 농업과학기술원 환경생태과)
  • Choi, Chul-Mann (Division of Environment and Ecology, National Institute of Agricultural Science and Technology, RDA) ;
  • Lee, Jong-Sik (Division of Environment and Ecology, National Institute of Agricultural Science and Technology, RDA) ;
  • Cho, Nam-Jun (Division of Environment and Ecology, National Institute of Agricultural Science and Technology, RDA) ;
  • Ryu, Hui-Yong (Division of Environment and Ecology, National Institute of Agricultural Science and Technology, RDA) ;
  • Park, Seong-Jin (Division of Environment and Ecology, National Institute of Agricultural Science and Technology, RDA) ;
  • Kim, Jin-Ho (Division of Environment and Ecology, National Institute of Agricultural Science and Technology, RDA) ;
  • Yun, Sun-Gang (Division of Environment and Ecology, National Institute of Agricultural Science and Technology, RDA) ;
  • Lee, Jeong-Taek (Division of Environment and Ecology, National Institute of Agricultural Science and Technology, RDA)
  • 발행 : 2008.06.30

초록

본 연구는 한강권역 농업용 소하천 88지점에 대하여 현재의 수질상태를 고려하여 수질등급모형을 구축하고자 실시하였다. 10개의 수질항목에 대하여 각 수질항목별 상위 20%씩 level을 부여한 후, 최저 등급을 기준으로 전체 수질등급을 부여하였는데, Level I에 해당하는 하천은 없었고, Level II는 1지점, Level III은 3지점, Level IV는 22지점, Level V는 62지점으로 조사되어 등급이 낮은 Level V로 갈수록 많은 하천들이 속하였다. 집단간 차이의 유무를 알아보기 위해 집단 평균의 동질성을 검정한 결과, DO, BOD, $COD_{Cr},\;NH_3-N$, 그리고 SS가 집단 간에 차이가 없는 것으로 조사되어 판별분석 시에는 제외되었다. 판별력이 가장 뛰어난 $NO_3-N$가 수질등급에 관여하는 변수로 선택되었으며, 분류함수계수에 의한 각 수질등급별 등급모형은 Level II=$-4.648+3.246{\times}[NO_3-N]$, Level III=$-5.084+3.456{\times}[NO_3-N]$, Level IV=$-4.298+3.067{\times}[NO_3-N]$, Level V=$-7.369+4.396{\times}[NO_3-N]$로 구축되었고, 적합도 평가에 의한 구축된 수질 등급모형의 적합도는 88.4%로 조사되어 높은 적합도를 보였지만, 향후 더 많은 자료의 확보와 축적으로 수질등급모형이 수정, 보완된다면 활용가능성은 더 높을 것으로 판단되며, 이를 바탕으로 각 권역별로도 실제 수질에 적합한 수질등급모형을 구축할 수 있으리라 생각된다.

The main purpose of this work is the development of water quality level model using the data such as DO, EC, BOD, $COD_{Cr},\;NH_3-N,\;NO_3-N,\;PO_4-P$, T-N, T-P, and SS in 88 agricultural streams of the Han river watersheds. To grant water quality level for each parameters, it divided into 20% respectively in the order of water quality level. On the basis of the lowest water quality level, water quality of streams was assigned. As the result, number of stream corresponding to Level Ⅰ was 0, Level II was 1 stream, Level III was 3 streams, Level IV was 22 streams, and Level V was 62 streams. By standardized canonical discriminant function coefficient, $NO_3-N$ was the highest in 0.427 at the discriminant power. According to discriminant function for water quality level, it was equal to $-4.648+3.246{\times}[NO_3-N],\;-5.084+3.456{\times}[NO_3-N],\;-4.298+3.067{\times}[NO_3-N],\;and\;-7.369+4.396{\times}[NO_3-N]$ from Level II to Level V, respectively. As a result of test at real data of the Han river watersheds in 2007, the suitability of water quality level model was high to 88.4%.

키워드

참고문헌

  1. Liding, C. and Bojie, F. (2000) Farm ecosystem management and control of nonpoint source pollution. Chinese J. Environ. Sci. 21, 98-100
  2. Peterson, J. M. and Boisvert, R. N. (2001) Control of nonpoint source pollution through voluntary incentive-based policies: an application to nitrate contamination in New York. Agricultural and Resource Economices Review 30(2), 127-138 https://doi.org/10.1017/S1068280500001076
  3. Bedient, P. B., Lambert, J. L. and Springer, N. K. (1980) Storm-water pollution load-runoff relationship. J. WPCF. 52(9), 2396-2404
  4. Ra, D. G. and Kim, K. S. (1996) Effect of nonpoint source pollutants on water quality. J. of Industrial Technology Institute Sunchon National Univ. 10, 139-149
  5. Kim, J. G. (2002) Evaluation of water quality in the Keum river using statistics analysis. J. Kor. Env. Sci. 11(12), 1281-1289 https://doi.org/10.5322/JES.2002.11.12.1281
  6. Ryu, J. K. (2004) A real time monitoring for water quality of river. J. KSWQ. 20(1), 1-11
  7. Petersen, W. Bertino, L. Callies, U. and Zorita, E. (2001) Process identification by principal component analysis of river water-quality data. Ecological Modeling 138, 193-213 https://doi.org/10.1016/S0304-3800(00)00402-6
  8. Haag, I. and Westrich, B. (2002) Processes governing river water quality identified by principal component analysis. Hydrol. Process. 16, 3113-3592 https://doi.org/10.1002/hyp.1091
  9. Kim, J. G. (2006) The evaluation of water quality in coastal sea of Incheon using a multivariate analysis. J. Kor. Env. Sci. 15(11), 1017-1025 https://doi.org/10.5322/JES.2006.15.11.1017
  10. Kim, J. H., Choi, C. M., Kim, W. I., Lee, J. S., Jung, G. B., Han, K. H., Ryu, J. S., Lee, J. T. and Kwun, S. K. (2007) Multi-variate statistical analysis for evaluation of water quality properties in Korean rural watershed. Kor. J. Environ. Agric. 26(1), 17-24 https://doi.org/10.5338/KJEA.2007.26.1.017
  11. Park, S. H., Cho, S. S. and Kim, S. S. (2005) SPSS (ver. 12.0k). Datasolution, Seoul. p.519
  12. Jung, C. Y. and Choi, E. G. (1999) Statistical analysis for spsswin, Muyok publishing company, Seoul, p.359-388
  13. Lee, M. O. and Baek, S. H. (1998) The prediction of red tides in Jinhae bay using a discriminant function. J. Kor. Env. Sci. 7(1), 8-19
  14. Kim, J. H., Choi, C. M., Ryu, J. S., Jung, G. B., Shin, J. D., Han, K. H., Lee, J. T. and Kwun, S. K. (2007) Development and Application of water quality level model for the small streams of rural watersheds with discriminant analysis. J. KSWQ. 23(2), 260-265