Optimal Salinity and Temperature Conditions for the Growth of the Ultra-small Rotifer Synchaeta kitina

초소형 Rotifer Synchaeta kitina의 성장을 위한 최적 염분 및 수온 조건

  • Park, Jin-Chul (Faculty of Marine Bioscience & Technology, Kangnung National University) ;
  • Park, Heum-Gi (Faculty of Marine Bioscience & Technology, Kangnung National University)
  • 박진철 (강릉대학교 해양생명공학부) ;
  • 박흠기 (강릉대학교 해양생명공학부)
  • Published : 2008.05.25

Abstract

We investigated the optimum salinity and temperature conditions for mass culture of ultra-small rotifer Synchaeta kitina. In the salinity experiment of ranging within 5 and 30 psu, the population growth of S. kitina increased continuously up to 20 psu, and then decreased over 20 psu. Their maximum density showed 390.1 inds./mL at 5 psu. A pre-reproductive phase was shortened in low salinity than high salinity. Also, the maximum offsprings and maximum lifespan and lifespan of the female were 13.4 inds. and 5.9 days, respctively at 5 psu. In the temperature experiments of ranging within 16 and $32^{\circ}C$, the population growth of S. kitina increased continuously up to $24^{\circ}C$, and then decreased over $24^{\circ}C$. The highest maximum density showed 492.8 inds./mL at $16^{\circ}C$. Their offsprings increased significantly with temperature decrease, and the maximum number of offsprings per female was 9.2 females. at $16^{\circ}C$. Their lifespan increased with temperatures decrease and the longest lifespan was to 5.5 days at $16^{\circ}C$. From these results, we conclude that the optimum culture conditions of S. kitina is 5 psu and $16^{\circ}C$.

본 연구는 입이 작은 어류들의 초기 먹이생물로 이용 가능성이 있는 초소형 rotifer Synchaeta kitina의 대량배양을 위한 최적 염분 및 수온을 규명하는데 그 목적이 있다. S. kitina를 대상으로 6개(5, 10, 15, 20, 25 및 30 psu)의 염분구와 5개(16, 20, 24, 28 및 $32^{\circ}C$)의 수온구를 두어 이들의 성장을 비교해 보았다. 이 때 모든 실험은 밀집 및 개체배양으로 나누어 행하였다. 염분 및 수온에 따른 실험결과, 밀집배양 시 최고밀도는 저온, 저염분 일 때 높은 경향을 5 psu, $16^{\circ}C$에서 유의적으로 가장 높게 나타났다. 또한 개체배양을 통한 생식 전 단계, 순 생식 단계, 산란수 및 수명 등의 성장요인들도 저온, 저염분 일수록 유의적으로 높게 나타나는 것으로 조사되었다. 따라서 초소형 rotifer S. kitina의 대량배양을 위한 최적 염분 및 수온 조건은 밀집배양 시 최고밀도를 보이고, 개체배양 시 생식, 평균수명과 같은 성장요인이 유의적으로 높게 나타난 5 psu, $16^{\circ}C$라 판단된다.

Keywords

References

  1. Awass, A. and P. Kestemont, 1992. An investigation into the mass production of the freshwater rotifer Brachionus calyciflorus Pallas. 2. Influence of temperature on the population dynamics. Aquaculture, 105, 337-344 https://doi.org/10.1016/0044-8486(92)90097-5
  2. Bosque, T., R. Hernndez, R. Prez, R. Todoland R. Oltra, 2001. Effects of salinity, temperature and food level on the demographic characteristics of the seawater rotifer, Synchaeta littoralis. Rousselet J. Exp. Mar. Biol. Ecol., 258, 55-64 https://doi.org/10.1016/S0022-0981(00)00345-2
  3. Brownell, C. L., 1988. A new pelagic marine rotifer from the southern Benguela, Synchaeta hutchingsi, n. sp., with notes on its temperature and salinity tolerance and methods of culture. Hydrobiologia, 162(3), 225-233 https://doi.org/10.1007/BF00016670
  4. Ducan, D. B., 1955. Multiple-range and mutiple F tests. Biometrics, 11, 1-42 https://doi.org/10.2307/3001478
  5. Duray, M. N., C. B. Estudillo and L. G. Alpasan, 1997. Larval rearing of the grouper Epinephelus suillus under laboratory conditions. Aquaculture, 150, 63-76 https://doi.org/10.1016/S0044-8486(96)01467-6
  6. Egloff, D. A., 1986. Effects of Olithodiscus luteus on the feeding and reproduction of the marine rotifer Synchaeta cecilia. J. Plank. Res., 8, 263-274 https://doi.org/10.1093/plankt/8.2.263
  7. Egloff, D. A., 1988. Food and growth relations of the marine microzooplankton, Synchaeta cecilia (Rotifera). Hydrobiologia, 157(2), 129-141 https://doi.org/10.1007/BF00006966
  8. Fukusho, K. and M. Okauchi, 1982. Strain and size of the rotifer, Brachionus plicatilis being cultured in southest asian countries. Bull. Nat'l. Res. Inst. Aquacult., 3, 107-109
  9. Fukusho, K. and M. Okauchi, 1983. Symparty in natural distribution of the two strains of a rotifer, Brachionus plicatilis. Bull. Nat'l. Res. Inst. Aquacult., 4, 135-138
  10. Fu, Y., A. Hada, T. Yamashita, Y. Yoshida and A. Hino, 1997. Developments of a cotinuous culture system for stable mass production of the marine rotifer Brachionus. Hydrobiologia, 358, 145-151 https://doi.org/10.1023/A:1003117430926
  11. Galkovskaja, G. A., 1987. Planktonic rotifers and temperature. Hydrobiologia, 147, 307-317 https://doi.org/10.1007/BF00025759
  12. Gomez, A., M. Temprano and M. Serra, 1995. Ecological genetics of a cyclical parthenogen in temporary habitats. J. Evol. Biol., 8, 601-622 https://doi.org/10.1046/j.1420-9101.1995.8050601.x
  13. Hagiwara, A., W. G. Gallardo, M. Assavaaree, T. Kotani and A. B. de Araujo, 2001. Live food production in Japan: recent progress and future aspects. Aquaculture, 200, 111-127 https://doi.org/10.1016/S0044-8486(01)00696-2
  14. Kang, E. J., B. I. Lee and E. O. Kim, 1997. Biological characteristics and growth of the Korean freshwater rotifer, Brachionius calyciflorus at various temperatures. J. Aquacult., 10(4), 449-456
  15. Kohno, H., R. S. Ordonio-Aguilar, A. Ohno and Y. Taki, 1997. Why is grouper larval rearing difficult?: an approach from the development of the feeding apparatus in early life stage larvae of the grouper, Epinephelus coioides. Ichthyol. Res., 44, 267-274 https://doi.org/10.1007/BF02678706
  16. Lawrence, J. R. and R. A. Snyder, 1998. Feeding behaviour and grazing impacts of a Euplotes sp. on attached bacteria. Can. J. Microbiol., 44(7), 623-629 https://doi.org/10.1139/cjm-44-7-623
  17. Lee, K. W., H. G. Park, S. M. Lee and H. K. Kang, 2006. Effects of diets on the growth of the brackish water cyclopoid copepod Paracyclopina nana Smirnov. Aquaculture, 256, 346-353 https://doi.org/10.1016/j.aquaculture.2006.01.015
  18. Lubzens, E., 1987. Rasing rotifers for use in aquaculture. Hydrobiologia, 147, 245-255 https://doi.org/10.1007/BF00025750
  19. Lubzens, E., A. Tandler and G. Minkoff, 1989. Rotifers as food in aquaculture. Hydrobiologia, 186/187, 387-400 https://doi.org/10.1007/BF00048937
  20. Lubzens, E., G. Minkoff, Y. Barr and O. Zmora, 1997. Mariculture in Israel-past achievements and future directions in raising rotifers as food for marine fish larvae. Hydrobiologia, 358, 13-20 https://doi.org/10.1023/A:1003117610203
  21. Miracle, M. R. and M. Serra, 1989. Salinity and temperature influence in rotifer life history characteristics. Hydrobiologia, 186/187, 81-102 https://doi.org/10.1007/BF00048900
  22. Nagano, N., Y. Iwatsuki, T. Kamiyama, H. Shimizu and H. Nakata, 2000. Ciliated protozoans as food for first-feeding larval grouper, Epinephetus septemfasciatus; Laboratory experiment. Plank. Biol. Ecol., 47, 93-99
  23. Oltra, R. and R. Todol, 1997. Effects of temperature, salinity and food level on the life history traits of the marine rotifer, Synchaeta cecilia valentina, n. subsp. J. Plank. Res., 19, 693-702 https://doi.org/10.1093/plankt/19.6.693
  24. Park, H. G., 1998. Growth and production of resting eggs of freshwater rotifer, Brachionus calyciflorus Pallas at the different temperatures. J. Kor. Fish. Soc., 31(5), 779-784
  25. Payne, M. F. and R. J. Rippingale, 2001. Intensive cultivation of the calanoid copepod Gladioferens imparipes. Aquaculture, 201, 329-342 https://doi.org/10.1016/S0044-8486(01)00608-1
  26. Rico-Martinez, R. and S. I. Dodson, 1992. Culture of the rotifer, Brachionus calyciflorus Pallas. Aquaculture, 105, 191-199 https://doi.org/10.1016/0044-8486(92)90130-D
  27. Rougier, C., R. Pourriot and T. Lam-Hoai, 2000. The genus Synchaeta (rotifer) in a north-western Mediterranean costal lagoon (Etang de Thau, France): Taxonomical and ecological remarks. Hydrobiologia, 436, 105-117 https://doi.org/10.1023/A:1026579212772
  28. Schipp, G. R., J. M. P. Bosmans and A. J. Marshall, 1999. A method for hatchery culture of tropical calanoid copepods, Acartia spp.. Aquaculture, 174, 81-88 https://doi.org/10.1016/S0044-8486(98)00508-0
  29. Schlter, M. and J. Groeneweg, 1985. The inhibition by ammonia of population growth of the rotifer, Brachionus rubebs, in continuous culture. Aquaculture, 46, 215-220 https://doi.org/10.1016/0044-8486(85)90207-8
  30. Schmid-Araya, J. M., 1991. The effect of food concentration on the life histories of Brachionus plicatilis and Encentrum linnhei Scott. Arch. Hydrobiol., 21, 87-102
  31. Shiel, R. J. and W. Koste, 1993. Rotifera from australian inland waters. IX. Gastropodidae, Synchaetidae, Asplanchnidae (Rotifera:Monogononta). Trans. Roy. Soc. S. Aust., 117(3), 111-139
  32. Suchar, V. A. and P. Chigbu, 2006. The effect of algae species and densities on the population growth of the marine rotifer, Colurella dicentra. J. Exp. Mar. Biol. Ecol., 337, 96-102 https://doi.org/10.1016/j.jembe.2006.06.015
  33. Toledo, J. D., N. B. Caberoy, G. F. Quinitio, C. H. Choresca, Jr. and H. Nakagawa, 2002. Effects of salinity, aeration and light intensity on oil globule absorption, feeding incidence, growth and survival of early-stage grouper Epinephelus coioides larvae. Fish. Sci., 68(3), 478-483 https://doi.org/10.1046/j.1444-2906.2002.00451.x
  34. Yin, X. W. and W. Zhao, 2008. Studies on life history characteristics of Brachionus plicatilis O. F. Müller (Rotifera) in relation to temperature, salinity and food algae. Aquat. Ecol., 42, 165-176 https://doi.org/10.1007/s10452-007-9092-4
  35. Yoo, J. H., 1992. Marine ciliate as a live feed for marine fish larvae. MS thesis, National Fisheries University of Pusan
  36. Yoo, J. H. and S. B. Hur, 2002. Evaluation of ciliate Euplotes sp. as a live food for marine fish larvae. J. Kor. Fish. Soc., 35(5), 542-544
  37. Yoshimura, K., C. Kitajima, Y. Miyamoto and G. Kishimoto, 1994. Factors inhibiting growth of the rotifer Brachionus plicatilis in high density cultivation by feeding consensed Chlorella. Nippon Suisan Gakkaishi, 60(2), 207-213 https://doi.org/10.2331/suisan.60.207
  38. Yu, J. P. and K. Hirayama, 1986. The effect of un-ionized ammonia on the population growth the rotifer in mass culture. Nippon Suisan Gakkaishi, 52, 1509-1513 https://doi.org/10.2331/suisan.52.1509