DOI QR코드

DOI QR Code

Design of Bit-Parallel Multiplier over Finite Field $GF(2^m)$

유한체 $GF(2^m)$상의 비트-병렬 곱셈기의 설계

  • 성현경 (상지대학교 컴퓨터정보공학부)
  • Published : 2008.07.30

Abstract

In this paper, we present a new bit-parallel multiplier for performing the bit-parallel multiplication of two polynomials in the finite fields $GF(2^m)$. Prior to construct the multiplier circuits, we consist of the vector code generator(VCG) to generate the result of bit-parallel multiplication with one coefficient of a multiplicative polynomial after performing the parallel multiplication of a multiplicand polynomial with a irreducible polynomial. The basic cells of VCG have two AND gates and two XOR gates. Using these VCG, we can obtain the multiplication results performing the bit-parallel multiplication of two polynomials. Extending this process, we show the design of the generalized circuits for degree m and a simple example of constructing the multiplier circuit over finite fields $GF(2^4)$. Also, the presented multiplier is simulated by PSpice. The multiplier presented in this paper use the VCGs with the basic cells repeatedly, and is easy to extend the multiplication of two polynomials in the finite fields with very large degree m, and is suitable to VLSI.

본 논문에서는 $GF(2^m)$ 상에서 표준기저를 사용한 두 다항식의 곱셈을 비트-병렬로 실현하는 새로운 형태의 비트-병렬 곱셈기를 제안하였다. 곱셈기의 구성에 앞서, 피승수 다항식과 기약다항식의 곱셈을 병렬로 수행 한 후 승수 다항식의 한 계수와 비트-병렬로 곱셈하여 결과를 생성하는 VCG를 구성하였다. VCG의 기본 셀은 2개의 AND 게이트와 2개의 XOR 게이트로 구성되며, 이들로부터 두 다항식의 비트-병렬 곱셈을 수행하여 곱셈 결과를 얻도록 하였다. 이러한 과정을 확장하여 m에 대한 일반화된 회로의 설계를 보였으며, 간단한 형태의 곱셈회로 구성의 예를 $GF(2^4)$를 통해 보였다. 또한 제시한 곱셈기는 PSpice 시뮬레이션을 통하여 동작특성을 보였다. 본 논문에서 제안한 곱셈기는 VCG의 기본 셀을 반복적으로 연결하여 구성하므로, 차수 m이 매우 큰 유한체상의 두 다항식의 곱셈에서 확장이 용이하며, VLSI에 적합하다.

Keywords

References

  1. B. A. Laws and C. K. Rushforth, "A Cellular Array Multiplier for (GG($2^{m}$," IEEE Trans. Computers, vol. C-20, pp. 1573-1578, Dec. 1971 https://doi.org/10.1109/T-C.1971.223173
  2. H. M. Shao, T. K. Truong, L. J. Deutsch, J. H. Yaeh and I. S. Reed, "A VLSI Design of a Pipelining Reed-Solomon Decoder," IEEE Trans. Computers, vol. C-34, pp. 393-403, May 1985 https://doi.org/10.1109/TC.1985.1676579
  3. C. C. Wang, T. K. Truong, H. M. Shao, L. J. Deutsch, J. K. Omura and I. S. Reed, "VLSI Architecture for Computing Multiplications and Inverses in ," IEEE Trans. Computers, vol. C-34, pp. 709-717, Aug. 1985 https://doi.org/10.1109/TC.1985.1676616
  4. P. A. Scott, S. E. Tarvares and L. E. Peppard, "A Fast Multiplier for ($2^m$," IEEE J. Select. Areas Communications, vol. SAC-4, no. 1, pp. 707-717, Jan. 1986
  5. I. S. Hsu, T. K. Truong, L. J. Deutsch and I. S. Reed, "A Comparison of VLSI Architecture of Finite Field Multipliers Using Dual, Normal, or Standard Bases," IEEE Trans. Computers, vol. C-37, no. 6, pp. 735-739, Jun. 1988
  6. C. L. Wang and J. L. Lin, "Systolic Array Implementation of Multipliers for Finite Fields GF($2^m$)," IEEE Trans. Circuits and Systems, vol. 38, no. 7, July 1991
  7. C. K. Koc and B. Sunar, "Low Complexity Bit-Parallel Canonical and Normal Basis Multipliers for a Class of Finite Fields," IEEE Trans. Computers, vol. 47, no. 3, pp. 353-356, Mar. 1998 https://doi.org/10.1109/12.660172
  8. Kiamal Z. Pekmestzi, "Multiplexer-Based Array Multipliers," IEEE Trans. Computers, vol. 48, no.1, pp. 15-23, Jan. 1999 https://doi.org/10.1109/12.743408
  9. H. Wu and M. A. Hasan, "Low Complexity Bit-Parallel Multipliers for a Class of Finite Fields," IEEE Trans. Computers, vol. 47, no. 8, pp. 883-887, Nov. 1998 https://doi.org/10.1109/12.707588
  10. J. J. Wonziak, "Systolic Dual Basis Serial Multiplier," IEE Proceeding Computers and Digital Technology, vol. 145, no. 3, pp.237-241, July 1998 https://doi.org/10.1049/ip-cdt:19981938
  11. C. S. Yeh, I. S. Reed and T. K. Truong, "Systolic Multipliers for Finite Field GF($2^m$)," IEEE Trans. Computers, vol. C-33, pp. 357-360, Apr. 1984 https://doi.org/10.1109/TC.1984.1676441
  12. Y. Wang, Z. Tian, X. Bi and Z. Niu, "Efficient Multiplier over Finite Field Represented in Type II Optimal Normal Basis," Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications (ISDA '06), 2006
  13. N. Petra, D. de Caro and A. G.M. Strollo, "A Novel Architecture for Galois Fields GF($2^m$) Multipliers Based on Mastrovito Scheme," IEEE Trans. Computers, vol. 58, no. 11, pp.1470-1483, Nov. 2007
  14. H. Wu and H. A. Hasan and L. F. Blake, "New Low-Complexity Bit-Parallel Finite Fields Multipliers Using Weekly Dual Basis," IEEE Trans. Computers, vol. 47, no. 11, pp. 1223-1234, Nov. 1998 https://doi.org/10.1109/12.736433
  15. A. Halbutogullari and C. K. Koc, "Mastrovito Multiplier for General Irreducible Polynomials," IEEE Trans. Computers, vol. 49, no. 5, pp. 503-518, May 2000 https://doi.org/10.1109/12.859542
  16. E. D. Mastrovito, "VLSI Design for Multiplication on Finite Field GF($2^m$)," Proc. International Conference on Applied Algebraic Algorithms and Error- Correcting Code, AAECC-6, Roma, pp. 297-309, July 1998
  17. S. B. Wicker and V. K. Bhargava, Error Correcting Coding Theory, McGraw- Hill, New York, 1989
  18. A. R. Masoleh and M. A. Hasan, "A New Construction of Massey-Omura Parallel Multiplier over GF($2^m$)," IEEE Trans. Computers, vol. 51, no. 5, pp. 511-520, May 2002 https://doi.org/10.1109/TC.2002.1004590
  19. H. Wu, "Bit-Parallel Finite Field Multiplier and Squarer Using Polynomial Basis," IEEE Trans. Computers, vol. 51, no. 7, pp. 750-758, July 2002 https://doi.org/10.1109/TC.2002.1017695
  20. H. Fan and Y. Dai, "Fast Bit-Parallel GF($2^m$) Multiplier for All Trinomials," IEEE Trans. Computer, vol. 54, no. 4, pp.485-490, Apr.. 2005 https://doi.org/10.1109/TC.2005.64
  21. A. K. Daneshbeh, and M. A. Hasan, "A Class of Unidirectional Bit Serial Systolic Architectures for Multiplicative Inversion and Division over GF($2^m$)," IEEE Trans. Computer, vol. 54, no. 3, pp.370-380, Mar. 2005 https://doi.org/10.1109/TC.2005.35
  22. S. Kumar, T. Wollinger and C. Paar, "Optimum Digit Serial GF($2^m$)Multipliers for Curve-Based Cryptography," IEEE Trans. Computers, vol. 55, no. 10, pp.1306-1311, Oct. 2006 https://doi.org/10.1109/TC.2006.165
  23. J. Imana, J. M. Sanchez and F. Tirado, "Bit-Parallel Finite Field Mutlipliers for Irreducible Trinomials," IEEE Trans. Computers, vol. 55, no. 5, pp.520-533, May 2006 https://doi.org/10.1109/TC.2006.69
  24. A. H. Namin, H. Wu and M. Ahma야, "Comb Architectures for Finite Field Multiplication in $IF_2$," IEEE Trans. Computers, vol. 56, no. 7, pp.909-916, July 2007 https://doi.org/10.1109/TC.2007.1047
  25. K. Sakiyama, L. Batina, B. Preneel and I. Verbauwhede, "Multicore Curve-Based Cryptoprocessor with Reconfigurable Modular Arithmetic Logic Units over GF($2^m$)," IEEE Trans. Computers, vol. 56, no. 9, pp.1269-1282, Sep. 2007 https://doi.org/10.1109/TC.2007.1071