DOI QR코드

DOI QR Code

Electrochemical Characteristics of CNT/TiO2 Nanocomposites Electrodes for Cancer Cell Sensor

바이오 센서용 CNT/TiO2 나노 복합 전극의 전기화학적 특성

  • Kim, Han-Joo (Department of Industrial Chemical Engineering, Chungbuk University) ;
  • You, Sun-Kyung (Department of Industrial Chemical Engineering, Chungbuk University) ;
  • Oh, Mi-Hyun (Department of Industrial Chemical Engineering, Chungbuk University) ;
  • Shen, Qin (State Key Laboratory of Bioelectronics, Southeast University) ;
  • Wang, Xuemei (State Key Laboratory of Bioelectronics, Southeast University) ;
  • Park, Soo-Gil (Department of Industrial Chemical Engineering, Chungbuk University)
  • Published : 2008.05.31

Abstract

In the recent years, increasing interests are being focused on the rational functionalization of the CNTs by some creative methods. However, the considerable toxicity of CNT is still a controversialissue and limits its biological application. To improve the biocompatibility of CNT, in this work we prepared CNT-$TiO_2$ nanocomposites with CNT and organic titanium precursors. Our observations demonstratethat the modified interface could accelerate the heterogeneous electron transfer rates and thusenhance the relevant detection sensitivity, suggesting its potential application as the new strategy for the development of the biocompatible and multi-signal responsive biosensors for the early diagnosis of cancers.

최근, 증폭되는 관심은 창조적인 방법에 따른 CNTs의 합리적인 기능화에 집중하고 있다. 하지만 CNTs의 적지 않은 독성은 아직 논쟁의 이슈가 되어 그 생물학적 응용이 제한되어왔다. CNT의 생체 적합성을 개선하기 위해 본 연구에서는 CNT와 유기적인 티타늄을 시작 물질로 나노 혼성의 CNT-$TiO_2$를 제조하여 전기화학적 거동을 고찰하였다. 본 연구는 개질 된 접촉면이 이질의 전자 전송율을 가속하고, 그 결과, 관련 검출감도를 강화할 수 있었음을 확인하였다. 또한 암의 초기 진단을 위한 생물학적 적합성으로 멀티신호의 민감한 바이오센서의 개발에 새로운 전략으로서 그 잠재력의 응용을 제안하고자 한다.

Keywords

References

  1. P. M. Ajayan, "Nanotubes from Carbon" Chem. Rev., 99, 1787 (1999) https://doi.org/10.1021/cr970102g
  2. R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, "Carbon Nanotubes-the Route Toward Applications" Science, 297, 787 (2002) https://doi.org/10.1126/science.1060928
  3. Y. P. Sun, K. Fu, Y. Lin, and W. J. Huang, "Functionalized carbon nanotubes : properties and applications" Acc. Chem. Res., 35, 1096 (2002) https://doi.org/10.1021/ar010160v
  4. L. Dai, P. Soundarrajan, and T. Kim, "Sensors and sensor arrays based on conjugated polymers and carbon nanotubes" Pure Appl. Chem., 74, 1753 (2002) https://doi.org/10.1351/pac200274091753
  5. P. J. Britto, K. S. V. Santhanam, and P. M. Ajayan, "Carbon nanotube electrode for oxidation of dopamine" Bioelectrochem. Bioenerg, 41, 121 (1996) https://doi.org/10.1016/0302-4598(96)05078-7
  6. E. Pennisi, "Simple recipe yields fullerene tubules" Sci. News, 142, 36 (1992)
  7. A. V. Ellis, K. Vijayamohanan, R. Goswami, N. Chakrapani, L. S. Ramanathan, P. M. Ajayan, and G. Ramanath, "Hydrophobic anchoring of monolayer-protected gold nanoclusters to carbon nanotubes", Nano Lett., 3, 279 (2003) https://doi.org/10.1021/nl025824o
  8. V. Georgakilas, K. Kordatos, M. Prato, D. M. Guldi, M. Holzinger, and A. Hirsch, "Organic functionalization of carbon nanotubes" J. Am. Chem. Soc., 124, 760 (2002) https://doi.org/10.1021/ja016954m
  9. B. R. Azamian, J. J. Davis, K. S. Coleman, C. B. Bagshaw, and M. L. H. Green, "Bioelectrochemical single-walled carbon nanotubes" J. Am. Chem. Soc., 124, 12664 (2002) https://doi.org/10.1021/ja0272989
  10. J. M. Haremza, M. A. Hahn, T. D. Krauss, S. Chen, and J. Calcines, "Attachment of single CdSe nanocrystals to individual single-walled carbon nanotubes", Nano Lett., 2, 1253 (2002) https://doi.org/10.1021/nl025799m
  11. H. Li, B. Zhou, Y. Lin, L. Gu, W. Wang, K. A. S. Fernando, S. Kumar, L. F. Allard, and Y. Sun, "Selective in teractions of porphyrins with semiconducting single-walled carbon nanotubes", J. Am. Chem. Soc., 126, 1014 (2004) https://doi.org/10.1021/ja037142o
  12. N. M. Dimitrijevic, Z. V. Saponjic, B. M. Rabatic, and T. Rajh, "Assembly and charge transfer in hybrid $TiO_2$ architectures using biotin-avidin as a connector", J. Am. Chem. Soc., 127, 1344 (2005) https://doi.org/10.1021/ja0458118
  13. B. M. Miller, E. Pujads, and E. Gocke,"Evaluation of the micronucleus test in vitro using Chinese hamster cells: results of four chemicals weakly positive in the in vivo micronucleus test", Environ. Mol. Mutagen., 26, 240 (1995) https://doi.org/10.1002/em.2850260309
  14. R. W. Tennant, B. H. Margolin, M. D. Shelby, E. Zeiger, J. K. Haseman, J. Spalding, W. Caspary, M. Resnick, S. Stasiewicz, B. Anderson, and R. Minor, "Prediction of chemical carcinogenicity in rodents from in vitro genetic toxicity assays", Science, 236, 933 (1987) https://doi.org/10.1126/science.3554512
  15. R. B. Mathur, P. H. Maheshwari, T. L. Dhami, and R. P. Tandon, "Characteristics of the carbon paper heat-treated to different temperatures and its influence on the performance of PEM fuel cell", Electrochim. Acta, 52, 4809 (2007) https://doi.org/10.1016/j.electacta.2007.01.041
  16. M. S. Saha, R. Y. Li, and X. L. Sun, Electrochem. Commun., 9, 2229 (2007) https://doi.org/10.1016/j.elecom.2007.06.032
  17. R. B. Mathur, P. H. Maheshwari, T. L. Dhami, R. K. Sharma, and C. P. Sharma, "Processing of carbon composite paper as electrode for fuel cell", J. Power Sources, 161, 790 (2006) https://doi.org/10.1016/j.jpowsour.2006.05.053
  18. Y. Wang, C. Y. Wang, and K. S. Chen,"Elucidating differences between carbon paper and carbon cloth in polymer electrolyte fuel cells", Electrochim. Acta, 52, 3965 (2007) https://doi.org/10.1016/j.electacta.2006.11.012
  19. H. Chen, C. K. Heng, P. D. Puiu, X. D. Zhou, A. C. Lee, T. M. Lim, and S. N. Tan, "Detection of Saccharomyces cerevisiae immobilized on self -assembled monolayer (SAM) of alkanethiolate using electrochemical impedance spectroscopy", Anal. Chim. Acta, 554, 52 (2005) https://doi.org/10.1016/j.aca.2005.08.086
  20. L. Ding, D. Du, J. Wu, and H. X. Ju, "A disposable impedance sensor for electrochemical study and monitoring of adhesion and proliferation of K562 leukaemia cells", Electrochem. Commun., 9, 953 (2007) https://doi.org/10.1016/j.elecom.2006.11.040
  21. M. M. Gottesman and I. Pastan, "Biochemistry of multidrug resistance mediated by the multidrug transporter", Annu. Rev. Biochem., 62, 385 (1993) https://doi.org/10.1146/annurev.bi.62.070193.002125

Cited by

  1. Electrocatalysts with High Current Efficiency for Ozone Production via Electrodeposited Nanostructures vol.165, pp.16, 2018, https://doi.org/10.1149/2.0051816jes